Hiển thị các bài đăng có nhãn Maths. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn Maths. Hiển thị tất cả bài đăng

14/06/2025

Câu 5 a, Thi tuyển lớp 10 2025, môn Toán Chuyên, Quảng Bình

 Đề: 

Tìm tất cả các cặp số nguyên $(x;y)$ thỏa mãn phương trình:

$(x-y)(x+y)+x^2(1-y)=17-2y$

Bài giải:

$(x-y)(x+y)+x^2(1-y)=17-2y$

$\Leftrightarrow (x^2-y^2)+(x^2-x^2y)+2y=17$

$\Leftrightarrow (2x^2-x^2y)+(2y-y^2)=17$

$\Leftrightarrow x^2(2-y)+y(2-y)=17$

$\Leftrightarrow (x^2+y)(2-y)=17$

Có 4 trường hợp sau:
+ Trường hợp 1:
$\left \lbrace \begin{aligned}&x^2+y=1 \\&2-y=17\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&x^2=16 \\&y=-15\end{aligned}\right.$

$\Leftrightarrow \left\lbrack\begin{aligned} \left \lbrace \begin{aligned}&x=4 \\&y=-15\end{aligned}\right.\\ \left \lbrace \begin{aligned}&x=-4 \\&y=-15\end{aligned}\right. \end{aligned}\right.$

+ Trường hợp 2:

$\left \lbrace \begin{aligned}&x^2+y=17 \\&2-y=1\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&x^2=16 \\&y=1\end{aligned}\right.$

$\Leftrightarrow \left\lbrack\begin{aligned} \left \lbrace \begin{aligned}&x=4 \\&y=1\end{aligned}\right.\\ \left \lbrace \begin{aligned}&x=-4 \\&y=1\end{aligned}\right. \end{aligned}\right.$

+ Trường hợp 3:

$\left \lbrace \begin{aligned}&x^2+y=-1 \\&2-y=-17\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&x^2=-20 \\&y=19\end{aligned}\right.$

=> Vô nghiệm vì $x^2 \ge 0 $

+ Trường hợp 4:

$\left \lbrace \begin{aligned}&x^2+y=-17 \\&2-y=-11\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&x^2=-20 \\&y=3\end{aligned}\right.$

=> Vô nghiệm vì $x^2 \ge 0 $
Như vậy các cặp số nguyên $(x;y)$ cần tìm là $(-4;-15),(4;-15),(-4;1),(4;1)$

Bài tìm nghiệm nguyên lớp 9 hay

 Đề:

Tìm nghiệm nguyên dương của phương trình $3^x-32=y^2$

Bài giải:

Ta có y chia cho 4 dư 0,1,2,3 suy ra $y^2$ chia cho 4 dư 0 hoặc 1.
Mà 32 chia hết cho 4 nên suy ra $3^x$ chia cho 4 dư 0 hoặc 1.
Ta có $3 \equiv -1 \pmod 4$
$\Rightarrow 3^x \equiv (-1)^x \pmod 4$
$\Rightarrow$ x là số chẵn.
Đặt $x=2k$ (k là số nguyên dương)
Thay vào phương trình đã cho ta có:
$3^{2k}-32=y^2$
$\Leftrightarrow (3^k)^2-y^2=32$

$\Leftrightarrow (3^k-y)(3^k+y)=32$

Vì y, k là các số nguyên dương nên:
$3^k+y > 3^k-y > 1$
Có hai trường hợp xảy ra:

+ Trường hợp 1:
$\left \lbrace \begin{aligned}&3^k+y=16 \\&3^k-y = 2\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&k=2 \\&y = 7\end{aligned}\right.$

$\Rightarrow \left \lbrace \begin{aligned}&x=4 \\&y = 7\end{aligned}\right.$
Thử lại ta thấy nghiệm này thỏa mãn phương trình đã cho 
+ Trường hợp 2:
$\left \lbrace \begin{aligned}&3^k+y=8 \\&3^k-y = 4\end{aligned}\right.$
Hệ phương trình này không có nghiệm nguyên.
Vậy phương trình đã cho có nghiệm $(x;y)$ nguyên dương là $(4;7)$


12/06/2025

Câu 5, Kỳ thi tuyển sinh lớp 10 năm 2025, Môn Toán (Chuyên Toán + Chuyên Tin), Long An

 Đề:

Cho n,m  là các số tự nhiên và $n^4+m^4$ chia hết cho 5. Tìm số dư khi chia $n^{2025}+m^{2025}$ cho 5.

Bài giải:

Đầu tiên ta đi tìm số dư của số tự nhiên a cho 5.
Ta có $a \equiv k \pmod 5$ với k là số tự nhiên thỏa $0\le k \le 4$

Suy ra $a^4  \equiv k^4 \pmod 5$

k$k^4$$k^4\ \text{mod}\ 5$
000
111
2161
3811
42561

Vậy  $a^4  \equiv 0 \pmod 5$ nếu a chia hết cho 5 và $a^4  \equiv 1 \pmod 5$ nếu a không chia hết cho 5.
Kết hợp giả thiết $n^4+m^4$ chia hết cho 5. Ta suy ra cả n và m phải chia hết cho 5.
Từ đó ta suy ra $n^{2025}+m^{2025}$ chia hết cho 5. Hay nói cách khác số dư khi chia $n^{2025}+m^{2025}$ cho 5 là 0.

08/06/2025

Câu 2 a) Môn Toán, Thi vào lớp 10 chuyên Hùng Vương Phú Thọ năm 2025

 Đề:

Cho p là số nguyên tố ; a,b là các số nguyên dương thỏa mãn: $\frac{p}{a}+\frac{p}{b}=1$ và $a+b$ chia hết cho p. Chứng minh rằng $\frac{a+b}{p}=4$

Bài giải:
Do $a+b$ chia hết cho p nên ta đặt $a+b=pk$ với k là số nguyên dương.
hay $a = pk - b$ .

Ngoài ra $\frac{p}{a}+\frac{p}{b}=1$ 

$\Leftrightarrow p(a+b) = ab$

$\Rightarrow p^2k=ab=(pk-b)b=pkb-b^2$

$\Rightarrow b^2-pkb+p^2k=0$

Giải phương trình bậc hai theo b. Tính $\Delta=(-pk)^2-4(p^2k)=p^2(k^2-4k)$
$\Delta \ge 0 \Leftrightarrow k \ge 4$ (do k là số nguyên dương)
Do b là số nguyên dương nên $\Delta$ phải là số chính phương $\Rightarrow k^2-4k$ phải là số chính phương
$  k^2-4k + (16-4k)  \le k^2-4k < k^2-4k+4 \Rightarrow (k-4)^2 \le k^2-4k < (k-2)^2$
Vì $k^2-4k$ là số chính phương nên:
$k^2-4k = (k-3)^2 \lor k^2-4k = (k-4)^2$

$\Leftrightarrow k=\frac{9}{2} \lor k = 4$
Do k là số nguyên dương và $k\ge 4$ nên ta chọn $k=4$
Với $k=4$ thì $\Delta =0 $ và $b=2p \Rightarrow a=2p$
Vậy $a+b=4p \Leftrightarrow \frac{a+b}{p}=4$ (đpcm)



07/06/2025

Câu 3 b) Môn Toán-Chuyên, Thi vào lớp 10 ĐắkLắk năm 2025

 Đề:

Tìm x,y nguyên dương và số nguyên tố p thỏa $x^5+x^4+1=p^y$

Bài giải:
Ta có: $x^5+x^4+1=p^y$
$(x^3-x+1)(x^2+x+1)=p^y$
$\Rightarrow x^3-x+1 = p^m \land x^2+x+1 = p^n $ (với $m+n=y$ và $m,n \ge 0$)
Nếu $x \ge 3$ thì ta có:
$x^3-x+1 =(x^3-1) - (x-2) = (x-1)(x^2+x+1)-(x-2) > x^2+x+1 $

$\Rightarrow p^m > p^n$ hay $m > n$  suy ra $p^m \ \vdots \ p^n \Rightarrow x^3-x+1\ \vdots\  x^2+x+1$
Mà: $x^3-x+1 =  (x-1)(x^2+x+1)-(x-2) $

Suy ra $x-2 \ \vdots \ x^2+x+1$ (1)
Nhưng với $x \ge 3$ thì $0 < x-2 < x^2+x+1$ (2)
Từ (1) và (2) ta thấy điều vô lý. Vậy $x < 3$
Thay lần lượt x=1 và x=2 vào đẳng thức đã cho ta tìm dược hai bộ số (x,y,p) thỏa mãn đề bài là:
$(1,1,3);(2;2;7)$  

Bài 3, câu 2, Chuyên Toán, Thi tuyển lớp 10 Bình Định năm 2025

 Đề:

Tìm tất cả các cặp số nguyên tố $(\alpha,\beta)$ sao cho $\alpha^2+6\alpha\beta+\beta^2+45$ là một số chính phương

Bài giải:
Do $\alpha$ và $\beta$ là số nguyên tố nên nếu $\alpha > 3$ và $\beta > 3$ thì 

$\alpha^2 \equiv 1 \pmod 3$ và $\beta ^2 \equiv 1 \pmod 3$

$\Rightarrow \alpha^2+6\alpha\beta+\beta^2+45 \equiv 2 \pmod 3$ vô lý vì số chính phương chia cho 3 dư 0 hoặc 1.
Do đó $\alpha$ và $\beta$ phải có 1 số nhỏ hơn hay bằng 3. Do vai trò như nhau ta giả sử số đó là $\alpha$

☼ Xét  $\alpha = 2 $ biểu thức đã cho thành $\beta^2+12\beta+49$. Mà:
 $\beta^2+12\beta+36<\beta^2+12\beta+49 < \beta^2+14\beta+49$

$\Rightarrow (\beta+6)^2 <\beta^2+12\beta+49< (\beta+7)^2$
Do đó không tồn tại $\beta$ để $\beta^2+12\beta+49$ là số chính phương 

☼ Xét  $\alpha = 3 $ biểu thức đã cho thành $\beta^2+18\beta+54$. Mà:
$\beta^2+14\beta +49 <\beta^2+18\beta+54 < \beta^2+18\beta+81$

$\Rightarrow (\beta+7)^2 < \beta^2+18\beta+54 <(\beta+9)^2$

Mà $\beta^2+18\beta+54$ là số chính phương nên:
$\beta^2+18\beta+54 = (\beta+8)^2$
$\Leftrightarrow \beta=5$
Vậy có hai cặp số nguyên tố $(\alpha,\beta)$ thỏa mãn đề bài là $(3,5);(5;3)$

Bài 3, câu 2, Toán chuyên tin, thi lớp 10 Bình Định năm 2025

 Đề:

Tìm tất cả các cặp số nguyên tố $(\alpha, \beta)$ sao cho $\alpha^2=6\beta^2+1$

Bài giải:

Ta có:$\alpha^2=6\beta^2+1$

$\Leftrightarrow \alpha^2-1=6\beta^2$

$\Leftrightarrow (\alpha-1)(\alpha+1)=6\beta^2$

Do $\alpha-1$ và $\alpha+1$ hoặc cùng chẵn hoặc cùng lẻ mà: $6\beta^2$ là số chẵn 

Nên $\alpha-1$ và $\alpha+1$ phải cùng là số chẵn hay $(\alpha-1)(\alpha+1) \ \vdots\ 4$

$\Rightarrow 6\beta^2 \ \vdots\  4$
Từ đây suy ra $\beta^2$ phải là số chẵn 

mà $\beta$ là số nguyên tố nên $\beta=2$

Thay vào biểu thức ban đầu ta tính được $\alpha = 5$

Vậy có 1 cặp số nguyên tố $(\alpha, \beta)$ thỏa mãn đẳng thức đã cho là $(5,2)$

04/06/2025

Câu II 1) Thi tuyển lớp 10 chuyên Đại học Khoa học Tự Nhiên (Hà Nội) năm 2025


 Đề:

Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn:

$25^y+(4^x+1)(4x^2+3x+3)=(4^x+4x^2+3x+4)5^y$

Bài giải:

$25^y+(4^x+1)(4x^2+3x+3)=(4^x+4x^2+3x+4)5^y$

$\Leftrightarrow (5^2)^y+(4^x+1)(4x^2+3x+3)-[(4^x+1)+(4x^2+3x+3)]5^y=0$

$\Leftrightarrow [(5^y)^2-(4^x+1)5^y]+[(4^x+1)(4x^2+3x+3)-(4x^2+3x+3)5^y]=0$

$\Leftrightarrow 5^y[5^y-(4^x+1)]+(4x^2+3x+3)[(4^x+1)-5^y]=0$

$\Leftrightarrow [5^y-(4^x+1)][5^y-(4x^2+3x+3)]=0$

$\Leftrightarrow \left\lbrack\begin{aligned} 5^y-(4^x+1)=0 (1)\\ 5^y-(4x^2+3x+3)=0 (2) \end{aligned}\right.$

  • Xét phương trình (1): $(1) \Leftrightarrow 5^y = 4^x+1 (3)$
    Ta có: $4 \equiv 1 \pmod 3 \Rightarrow 4^x \equiv 1 \pmod 3  \Rightarrow 4^x+1 \equiv 2 \pmod 3$
    Suy ra y phải là số lẻ (vì nếu y là số chẵn thì $5^y \equiv 1 \pmod 3$)
    Đặt $y=2k+1, k=0,1,2,...$, thay vào (3), ta có:
    $5^{2k+1} = 4^x+1 \Leftrightarrow 5.25^k= 4^x+1$
    Vì $25 \equiv 1 \pmod 8 \Rightarrow 5.25^k \equiv 5 \pmod 8$ 
    Nếu $x \ge 2 \Rightarrow 4^x + 1 = 16.4^{x-2} + 1  \equiv 1 \pmod 8$ (vô lý)
    Vậy $x=1 \Rightarrow y=1$ 
  • Xét phương trình (2):$(2) \Leftrightarrow 5^y = 4x^2+3x+3 (4)$
    Do $4x^2+3x+3 = x^2 + 3x^2+3x+3 \equiv x^2 \pmod 3 \Rightarrow 5^y \equiv x^2 \pmod 3$ 
    Mà số chính phương thì chia cho 3 dư 0 hoặc 1 suy ra y phải là số chẵn. Đặt $y=2k$
    $(4) \Leftrightarrow 5^{2k}= 4x^2+3x+3$
    $\Leftrightarrow (5^k)^2 = 4x^2+3x+3 $ 
    $\Rightarrow 4x^2+3x+3$ là số chính phương
    Mà $(2x)^2 < 4x^2+3x+3 < 4x^2+3x+3 + 5x+1 $
    $= (2x)^2+2.2x.2+2^2 = (2x+2)^2$
    Suy ra: $4x^2+3x+3 = (2x+1)^2$
    $\Leftrightarrow4x^2+3x+3=4x^2+4x+1$
    $\Leftrightarrow x=2 \Rightarrow y=2$
Vậy các cặp số nguyên dương (x;y) cần tìm là $(1;1),(2;2)$


Câu I 2) Thi tuyển lớp 10 chuyên Đại học Khoa học Tự Nhiên (Hà Nội) năm 2025

 Đề: 

Giải hệ phương trình:

$\left \lbrace \begin{aligned}&x+y+xy=3 \\&1+12(x+y)= 7y^3+6xy(y+3-xy)\end{aligned}\right.$

Bài giải:

Đánh số các phương trinh trong hệ: 

$\left \lbrace \begin{aligned}&x+y+xy=3 (1) \\&1+12(x+y)= 7y^3+6xy(y+3-xy) (2) \end{aligned}\right.$

Ta đi biến đổi phương trình (2) và sử dụng phương trình (1). Lưu ý hằng đẳng thức:

$(a+b)^3=a^3+3a^2b+3ab^2+b^3$

$(2)\Leftrightarrow (x^3+y^3)+1+12(x+y)= (x^3+y^3)+7y^3+6xy(y+3-xy) (3)$

$ \text{VP PT (3)} = 8y^3+6xy[y+(x+y-xy)-xy]+x^3$

$=(2y)^3+6xy(2y+x)+x^3$

$=(2y)^3+3.(2y)^2.x+3.(2y).x^2+x^3=(2y+x)^3$

$ \text{VT PT (3)} = [(x+y)^3-3x^2y-3xy^2]+[3(x+y)^2-3(x+y)^2]+$

$3(x+y)+9(x+y)+1=[(x+y)^3+3.(x+y)^2+3(x+y)+1]-$

$[3x^2y+3xy^2+3(x+y)^2-9(x+y)]$

$=(x+y+1)^3-3[xy(x+y)+(x+y)^2-3(x+y)]$

$=(x+y+1)^3-3(x+y)(xy+x+y-3)=(x+y+1)^3$

Vậy $(3)\Leftrightarrow (2y+x)^3=(x+y+1)^3$

$\Leftrightarrow 2y+x = x+y+1$

$\Leftrightarrow y = 1$

Thay vào (1) ta tìm được $x=1$

Vậy hệ phương trình đã cho có nghiệm là $(1;1)$

31/05/2025

Câu 3a, Thi tuyển lớp 10 chuyên, Đại học khoa học năm học 2025-2026

Đề:
Tìm tất cả các số tự nhiên x,y,z thỏa: $x^2-9y^2+10=3^z$
Bài giải:
$x^2-9y^2+10=3^z$
$\Leftrightarrow (x^2+1) -9y^2+9=3^z$
Nếu $z \ge 1$ thì $3^z \vdots 3$
và $-9y^2\vdots3 \land 9\vdots 3$
Suy ra $x^2+1 \vdots 3$
+ Xét $x=3k$ ($k \in N$) $\Rightarrow x^2=9k^2 \Rightarrow x^2+1=9k^2+1$ không chia hết cho 3
+ Xét $x=3k+1$ ($k \in N$) $\Rightarrow x^2=9k^2+6k+1 \Rightarrow x^2+1=9k^2+6k+2=3p-1$ không chia hết cho 3
+ Xét $x=3k-1$ ($k \in N$) $\Rightarrow x^2=9k^2-6k+1 \Rightarrow x^2+1=9k^2-6k+2=3p-1$ không chia hết cho 3
Do đó không thể tồn tại x để $x^2+1 \vdots 3$
Vậy $z=0$
Phương trình đã cho thành $x^2-9y^2+10=3^0$
$\Leftrightarrow x^2-9y^2+10=1$
$\Leftrightarrow x^2-9y^2+9=0$
Từ đây ta suy ra $x^2\vdots3$ 
nên x có dạng $x=3k$
$9k^2-9y^2+9 =0 $
 $\Leftrightarrow k^2-y^2+1 =0 $
$\Leftrightarrow y^2-k^2 = 1$
$\Leftrightarrow (y-k)(y+k)=1$
$\Rightarrow y-k = 1 \land  y+k =1$
$ \Rightarrow y=1 \land k = 0$
$ \Rightarrow y=1 \land x= 0$
Thử lại bộ (0;1;0) thấy thỏa mãn 
Vậy x=0, y=1, z=0 

30/05/2025

Câu 2b, thi tuyển lớp 10 chuyên Bạc Liêu, năm học 2025-2026

 Đề:

Cho a,b,c dương thỏa $abc(a+b+c)=1$. Tìm giá trị nhỏ nhất của biểu thức:
$S=\frac{a^6}{a^4+3b^4}+\frac{b^6}{b^6+3c^6}+\frac{c^6}{c^6+3a^6}$

Lời giải:

Ta không thể áp dụng bất đẳng thức AM-GM trực tiếp cho biểu thức dưới mẫu vì ngược chiều bất đẳng thức, do đó ta phải biến đổi: 
$S=\frac{a^6}{a^4+3b^4}+\frac{b^6}{b^6+3c^6}+\frac{c^6}{c^6+3a^6}$

$=a^2-\frac{3a^2b^4}{a^4+3b^4}+b^2-\frac{3b^2c^4}{b^6+3c^6}+c^2-\frac{3c^2a^4}{c^6+3a^6}$

Ta có:

$a^4+3b^4 = a^4+b^4+b^4+b^4 \ge 4\sqrt[4]{a^4.b^4.b^4.b^4}$ (Dấu "=" xảy ra khi và chỉ khi a=b)

$\Rightarrow a^4+3b^4 \ge 4ab^3$

$\Rightarrow \frac{3a^2b^4}{a^4+3b^4} \le \frac{3a^2b^4}{4ab^3}=\frac{3}{4}ab \le \frac{3}{4} \frac{a^2+b^2}{2} =\frac{3}{8}(a^2+b^2)$

 (Dấu "=" xảy ra khi và chỉ khi a=b)

Tương tự ta có:

$\frac{3b^2c^4}{b^6+3c^6} \le \frac{3}{8}(b^2+c^2)$  (Dấu "=" xảy ra khi và chỉ khi b=c)

$\frac{3c^2a^4}{c^6+3a^6} \le  \frac{3}{8}(c^2+a^2)$ (Dấu "=" xảy ra khi và chỉ khi c=a)

Từ đây ta có:

$ S =a^2-\frac{3a^2b^4}{a^4+3b^4}+b^2-\frac{3b^2c^4}{b^6+3c^6}+c^2-\frac{3c^2a^4}{c^6+3a^6}$

$\ge a^2-\frac{3}{8}(a^2+b^2)+b^2-\frac{3}{8}(b^2+c^2)+c^2-\frac{3}{8}(c^2+a^2)$

$=\frac{1}{4}(a^2+b^2+c^2)$
(Dấu "=" xảy ra khi và chỉ khi a=b=c)
Ngoài ra ta có:
$a^2+b^2+c^2 \ge \frac{1}{3}(a+b+c)^2$ và $(a^2+b^2+c^2)^3 \ge 3^3 (abc)^2$

(Dấu "=" xảy ra khi và chỉ khi a=b=c)
$\Rightarrow (a^2+b^2+c^2)^4 \ge 3^2 [abc (a+b+c)]^2 =3^2$

(Dấu "=" xảy ra khi và chỉ khi $a=b=c=\frac{1}{\sqrt[4]{3}}$)

$\Rightarrow a^2+b^2+c^2 \ge \sqrt{3}$

Vậy $S \ge \frac{1}{4}(a^2+b^2+c^2) \ge \frac{\sqrt{3}}{4}$
$S_\text{min}=\frac{\sqrt{3}}{4}$ khi $a=b=c=\frac{1}{\sqrt[4]{3}}$


28/05/2025

Bài II.2) Đề chọn học sinh giỏi THCS quận Hoàn Kiếm năm học 2023-2024

 Đề:

Tìm tất cả các cặp số nguyên (x;y) thỏa mãn $(x^2+3)y^2-y^3+2x^2=2y(2x^2-1)+3$

Bài giải:

$(x^2+3)y^2-y^3+2x^2=2y(2x^2-1)+3$

$\Leftrightarrow x^2y^2+3y^2-y^3+2x^2=4yx^2-2y+3$

$\Leftrightarrow x^2y^2-4yx^2+2x^2=y^3-3y^2-2y+3$

$\Leftrightarrow (y^2-4y+2)x^2=y^3-3y^2-2y+3 (1)$

Vì $y^2-4y+2 \ne 0  \forall y \in Z$ (hai nghiệm là số vô tỉ)

Nên $(1) \Leftrightarrow x^2 = \frac{y^3-3y^2-2y+3}{y^2-4y+2}$

$\Leftrightarrow x^2 = y+1 + \frac{1}{y^2-4y+2} (2)$ 

Vì $ x^2 \in Z \Rightarrow 1 \vdots y^2-4y+2 \Rightarrow y^2-4y+2 = 1 \lor y^2-4y+2 = -1$

* Xét $y^2-4y+2 = 1$

$\Leftrightarrow y^2-4y+1 = 0$ 

Giải phương trình bậc 2 này ta có hai nghiệm y: $2-\sqrt{3}$ và $2+\sqrt{3}$ không phải là số nguyên

* Xét $y^2-4y+2 = -1$

$\Leftrightarrow y^2-4y+3 = 0$ 

Phương trình có 2 nghiệm $y=1$ và $y=3$

+ y = 1, thay vào (2) ta có $x^2=1+1-1$

$\Leftrightarrow x^2=1$

$\Leftrightarrow x=\pm1$

+ y =3, thay vào (2) ta có $x^2=3+1-1$

 $x^2=3+1-1$

$\Leftrightarrow x^2=3$

$\Leftrightarrow x=\pm\sqrt{3}$ (loại vì $x \in Z$)

Vậy các bộ số $(x;y)$ cần tìm là $(1;1), (-1;1)$



00:6
2025-08-30

Câu 3b, Thi lớp 10 chuyên Hà Tĩnh, năm học 2024-2025

 Đề:

Tìm tất cả các số nguyên dương a,b,c thỏa mãn $(a+1)(b+1)(c+1)=3abc$
Bài giải:

Do vai trò a,b,c như nhau nên ta giả sử $a \ge b \ge c$, điều này có nghĩa là nếu ta tìm ra đáp số $(a_0;b_0;c_0)$ thì tất cả các hoán vị của bộ này : $(a_0;c_0;b_0),(b_0;a_0;c_0),(b_0;c_0;a_0),(c_0;a_0;b_0),(c_0;b_0;a_0)$ cũng thỏa mãn đẳng thức đã cho.  

Ta có:

$(a+1)(b+1)(c+1)=3abc$

$\Leftrightarrow \frac{(a+1)(b+1)(c+1)}{abc}=3$

$\Leftrightarrow (\frac{a+1}{a})(\frac{b+1}{b})(\frac{c+1}{c})=3$

$\Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})=3 (1) $

Từ  $a \ge b \ge c$

$\Rightarrow \frac{1}{a} \le \frac{1}{b} \le \frac{1}{c}$

$\Rightarrow 1+\frac{1}{a} \le 1+\frac{1}{b} \le 1+\frac{1}{c}$

$\Rightarrow 3=(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c}) \le (1+\frac{1}{c})^3$

$\Rightarrow 1+\frac{1}{c} \ge \sqrt[3]{3}$

$\Rightarrow \frac{1}{c} \ge \sqrt[3]{3} -1 $

$\Rightarrow c  \le \frac{1}{\sqrt[3]{3} -1} < 2.3 $

Do c là số nguyên dương nên $c=1$ hoặc $c=2$

+ Xét c=1 

Thay c =1 vào (1) ta có:

$ (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{1})=3 $

$ \Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})2=3 $

$ \Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})=\frac{3}{2} $

Từ  $a \ge b $

$\Rightarrow \frac{1}{a} \le \frac{1}{b}$

$\Rightarrow 1+\frac{1}{a} \le 1+\frac{1}{b}$

$\Rightarrow \frac{3}{2}=(1+\frac{1}{a})(1+\frac{1}{b}) \le (1+\frac{1}{b})^2$

$\Rightarrow 1+\frac{1}{b} \ge \sqrt{\frac{3}{2}}$

$\Rightarrow \frac{1}{b} \ge \sqrt{\frac{3}{2}} -1 $

$\Rightarrow b  \le \frac{1}{\sqrt{\frac{3}{2}} -1} < 4.5 $

Do b là số nguyên dương nên b=1,2,3,4 

* b = 1, thay c=1,b=1 vào biểu thức ban đầu ta có:

 $(a+1)(1+1)(1+1)=3a.1.1$ 

$\Rightarrow 4(a+1)=3a$

$\Rightarrow a=-4$ (loại khả năng này vì a nguyên dương)

* b = 2, thay c=1, b=2 vào biểu thức ban đầu ta có:

 $(a+1)(2+1)(1+1)=3a.2.1$ 

$\Rightarrow 6(a+1)=6a$ 

$\Rightarrow 6=0$ (vô lý, loại khả năng này) 

* b = 3, thay c=1, b=3 vào biểu thức ban đầu ta có:

 $(a+1)(3+1)(1+1)=3a.3.1$ 

$\Rightarrow 8(a+1)=9a$

$\Rightarrow a=8 $ (thỏa điều kiện)

* b = 4, thay c=1, b=4 vào biểu thức ban đầu ta có:

$(a+1)(4+1)(1+1)=3a.4.1$

$\Rightarrow 10(a+1)=12a$

$\Rightarrow 2a=10$

$\Rightarrow a=5$ (thỏa điều kiện) 

Vậy với c=1, ta thu được hai bộ số $(8;3;1),(5;4;1)$ thỏa mãn đẳng thức đã cho

+ Xét c = 2

Thay c =2 vào (1) ta có:

$ (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{2})=3 $

$ \Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})\frac{3}{2}=3 $

$ \Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})=2 $

Từ  $a \ge b $

$\Rightarrow \frac{1}{a} \le \frac{1}{b}$

$\Rightarrow 1+\frac{1}{a} \le 1+\frac{1}{b}$

$\Rightarrow 2 =(1+\frac{1}{a})(1+\frac{1}{b}) \le (1+\frac{1}{b})^2$

$\Rightarrow 1+\frac{1}{b} \ge \sqrt{2}$

$\Rightarrow \frac{1}{b} \ge \sqrt{2} -1 $

$\Rightarrow b  \le \frac{1}{\sqrt{2} -1} < 2.5 $

Do b là số nguyên dương lớn hơn hay bằng c nên b chỉ có thể là 2 

Thay b=2, c=2 vào biểu thức đã cho ta có:

$(a+1)(2+1)(2+1)=3a.2.2$

$\Leftrightarrow 9(a+1)=12a$

$\Leftrightarrow 3a=9$

$\Leftrightarrow a=3$ (thỏa điều kiện)
Vậy trường hợp c=2 ta thu được 1 bộ số $(3;2;2)$ thỏa đẳng thức đã cho
Đáp số:

Các số (a;b;c) cần tìm là $(8;3;1),(5;4;1),(3;2;2)$ và các hoán vị của chúng.


26/05/2025

Câu 2a, Thi chuyên 10 Bạc Liêu, năm học 2025-2026

 Đề:

Giải hệ phương trình:

$\left \lbrace \begin{aligned}&x^2+(x-1)(y+1) =2y^2-1 \\&x^2+y^2-10= 0\end{aligned}\right.$

Bài giải:

Biến đổi phương trình thứ nhất:

$x^2+(x-1)(y+1) =2y^2-1$

$\Leftrightarrow x^2+xy+x-y-1=2y^2-1$

$\Leftrightarrow 2y^2+(1-x)y-x^2-x=0$

Giải phương trinh bậc hai này theo biến y.

Ta có $\Delta = (1-x)^2-4.2.(-x^2-x)=x^2-2x+1+8x^2+8x=9x^2+6x+1=(3x+1)^2 \ge 0 \forall x$

Ta tính ra được $y=x$ hoặc $y = -\frac{x+1}{2}$

  • $y = x$ thay vào phương trình thứ 2 ta có:
    $x^2+x^2-10=0$
    $\Leftrightarrow 2x^2=10$
    $\Leftrightarrow x^2 = 5$
    $ \Leftrightarrow x=\pm\sqrt{5}$
    Ta thu được hai nghiệm $(-\sqrt{5};-\sqrt{5}), (\sqrt{5};\sqrt{5})$
  • $y = -\frac{x+1}{2}$ thay vào phương trình thứ hai ta có:
    $x^2+(-\frac{x+1}{2})^2-10=0$
    $\Leftrightarrow 5x^2+2x-39=10$
    Giải phương trình bậc hai này ta có hai nghiệm $x=-3$ và $x=\frac{13}{5}$
    Tương ứng với $y=1$ và $y=-\frac{9}{5}$
    Ta thu thêm hai nghiệm của hệ phương trình đã cho là $(-3;1),(\frac{13}{5};-\frac{9}{5})$
Vậy hệ phương trình đã cho có 4 nghiệm:
$(-\sqrt{5};-\sqrt{5}), (\sqrt{5};\sqrt{5}),(-3;1),(\frac{13}{5};-\frac{9}{5})$


25/05/2025

Câu 4, Thi tuyển lớp 10 chuyên Bạc Liêu năm học 2025-2026

Đề:
Tìm tất cả các nghiệm nguyên dương của phương trình: $x(x-y-1)+y(y-1)=3$
Lời giải:
$x(x-y-1)+y(y-1)=3$
$\Leftrightarrow x^2-(y+1)x+y^2-y-3=0$
Giải phương trình bậc hai theo nghiệm x. Ta có: $\Delta = (y+1)^2 -4(y^2-y-3) = (y^2+2y+1)-4y^2+4y+12 = -3y^2+6y+13$
Để phương trình có nghiệm x thì $\Delta \ge 0$
$\Leftrightarrow -3y^2+6y+13 \ge 0$
$\Leftrightarrow 1-\frac{4}{\sqrt{3}} \le y \le 1+\frac{4}{\sqrt{3}}$
Do y là số nguyên dương nên $y=1,2,3$ Thay giá trị của y lần lượt vào công thức tính x:$x=\frac{y+1 \pm \sqrt{-3y^2+6y+13}}{2}$
  • $y=1$ thì $x=-1 \lor x=3$ vì x là số nguyên dương nên chọn nghiệm $x=3$
  • $y=2$ thì $x=\frac{3\pm\sqrt{13}}{2}$ vì x là số nguyên dương nên loại cả hai nghiệm này.
  • $y=3$ thì $x=1 \lor x=3$ cả hai đều là số nguyên dương nên ta nhận cả hai nghiệm này.
Vậy phương trình đã cho có 3 nghiệm nguyên dương:$(1;3),(3;3),(3;1)$

Câu 1b, Thi 10 Chuyên Bạc Liêu năm học 2025-2026

Đề: Cho x,y,z dương thỏa mãn $xyz=1$
Tính giá trị biểu thức $P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}$
Bài giải: $P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1} (1)$
Biến đổi P như sau:
$P=\frac{\sqrt{x}.\sqrt{z}}{(\sqrt{xy}+\sqrt{x}+1).\sqrt{z}}+\frac{\sqrt{y}.\sqrt{x}}{(\sqrt{yz}+\sqrt{y}+1).\sqrt{x}}+\frac{\sqrt{z}.\sqrt{y}}{(\sqrt{xz}+\sqrt{z}+1).\sqrt{y}}$
$=\frac{\sqrt{xz}}{1+\sqrt{xz}+\sqrt{z}}+\frac{\sqrt{xy}}{1+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{yz}}{1+\sqrt{yz}+\sqrt{y}}$
$P=\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1} (2)$
Biến đổi P theo cách khác:
$P=\frac{\sqrt{x}.\sqrt{yz}}{(\sqrt{xy}+\sqrt{x}+1).\sqrt{yz}}+\frac{\sqrt{y}.\sqrt{xz}}{(\sqrt{yz}+\sqrt{y}+1).\sqrt{xz}}+\frac{\sqrt{z}.\sqrt{xy}}{(\sqrt{xz}+\sqrt{z}+1).\sqrt{xy}}$
$=\frac{1}{\sqrt{y}+1+\sqrt{yz}}+\frac{1}{\sqrt{z}+1+\sqrt{xz}}+\frac{1}{(\sqrt{x}+1+\sqrt{xy}}$
$P=\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1} (3)$
Cộng (1), (2) và (3) vế theo vế ta có:
$3P=(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1})$ $+(\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1})$ $+(\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1}) $
$=(\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{xy}+\sqrt{x}+1})+$ $(\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1})+$ $(\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1})$
$=1+1+1=3$
$\Rightarrow P = 1$
Đáp số:$P=1$

Câu 1a, Thi 10 Chuyên Bạc Liêu năm học 2025-2026

 Đề:

Rút gọn biểu thức $A=\sqrt{8+2\sqrt{15}}+\sqrt{7-4\sqrt{3}}-\sqrt{5}$

Lời giải:
$A=\sqrt{8+2\sqrt{15}} +\sqrt{7-4\sqrt{3}}-\sqrt{5}$
$=\sqrt{3+2\sqrt{3}\sqrt{5}+5}+\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{5}$
$=\sqrt{(\sqrt{3})^2+2\sqrt{3}\sqrt{5}+(\sqrt{5})^2}+\sqrt{2^2-2.2.\sqrt{3}+(\sqrt{3})^2}-\sqrt{5}$
$=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(2-\sqrt{3})^2}-\sqrt{5}$
$=(\sqrt{3}+\sqrt{5})+(2-\sqrt{3})-\sqrt{5}$
$=2$
Đáp số: $A=2$

Câu 2b, Thi vào lớp 10 chuyên Hà Tĩnh năm học 2024-2025

 Đề:

Giải hệ phương trình 

$\left \lbrace \begin{aligned}&(x+y)(4x+y) = 5x+2y-1 \\&2x^2-5x+2\sqrt{x+y}-\sqrt{3x-1} = 0\end{aligned}\right.$

Lời giải:

Điều kiện $3x-1\ge0 \land x+y \ge0 \Leftrightarrow y \ge -x \land x\ge \frac{1}{3}$

Phương trình thứ nhất $\Leftrightarrow 4x^2+5xy+y^2=5x+2y-1$

$\Leftrightarrow y^2+(5xy-2y)+(4x^2-5x-1)=0$

$\Leftrightarrow y^2+(5x-2)y+(4x^2-5x-1)=0$

Giải phương trình bậc 2 theo biến y, ta có hai hai nghiệm $y=1-x$ và $y=1-4x$

  • Trường hợp $y=1-x$ thay vào phương trình thứ 2:
    $2x^2-5x+2\sqrt{1}-\sqrt{3x-1} = 0$
    $\Leftrightarrow \sqrt{3x-1} = 2x^2-5x+2$
    $\Rightarrow 3x-1 = (2x^2-5x+2)^2$
    $\Leftrightarrow  4x^4-20x^3+33x^2-23x+5=0$
    $\Leftrightarrow (x^2-3x+1)(4x^2-8x+5)=0 (1)$
    Do $4x^2-8x+5 = 4(x^2-2x+1)+1 = 4(x-1)^2+1 \ge 1 \forall x$ 
    Nên $(1) \Leftrightarrow x^2-3x+1 = 0$
    Phương trình có hai nghiệm $x_1=\frac{3}{2}-\frac{\sqrt{5}}{2}$;$x_2=\frac{3}{2}+\frac{\sqrt{5}}{2}$
    Cả hai nghiệm thỏa mãn điều kiện $x\ge \frac{1}{3}$

  • Trường hợp $y=1-4x$ :
    Từ diều kiện $y \ge -x$, ta có: $1-4x \ge -x \Leftrightarrow x \le \frac{1}{3}$ 
    Kết hợp điều kiện $x\ge \frac{1}{3}  \Rightarrow x = \frac{1}{3}$. 
    Thay vào phương trình thứ 2 ta thấy giá trị này không thỏa.
    Đáp số:
    Hệ phương trình đã cho có hai nghiệm:$(\frac{3}{2}-\frac{\sqrt{5}}{2};-\frac{1}{2}+\frac{\sqrt{5}}{2}), (\frac{3}{2}+\frac{\sqrt{5}}{2};-\frac{1}{2}-\frac{\sqrt{5}}{2})$

  • Câu 2a, Thi vào lớp 10 chuyên Hà Tĩnh, năm 2024-2025

     Đề:

    Giải phương trình:

    $4x^3+31x^2-27=12(x^2+x)\sqrt{1-x}$ 
    Bài giải:
    Điều kiện: $x \le 1$
    $4x^3+31x^2-27=12(x^2+x)\sqrt{1-x}$
    $\Leftrightarrow (4x^3+4)+(31x^2-31)-12x(x+1)\sqrt{1-x}=0$
    $\Leftrightarrow 4(x^3+1)+31(x^2-1)-12x(x+1)\sqrt{1-x}=0$
    $\Leftrightarrow 4(x+1)(x^2-x+1)+31(x-1)(x+1)-12x(x+1)\sqrt{1-x}=0$
    $\Leftrightarrow (x+1)[4(x^2-x+1)+31(x-1)-12x\sqrt{1-x}]=0$
    $\Leftrightarrow \left[\begin{aligned}x+1 = 0 (1)\\4(x^2-x+1)+31(x-1)-12x\sqrt{1-x} = 0(2)\end{aligned}\right.$
    $(1) \Leftrightarrow x = -1$
    $(2) \Leftrightarrow [4x^2-2.2x.3\sqrt{1-x}+9(1-x)]+[27(x-1)-9(1-x)]=0$
    $\Leftrightarrow (2x-3\sqrt{1-x})^2-(6\sqrt{1-x})^2=0$
    $\Leftrightarrow \left[\begin{aligned}2x-3\sqrt{1-x}+ 6\sqrt{1-x}= 0 \\2x-3\sqrt{1-x}- 6\sqrt{1-x} = 0\end{aligned}\right.$
    $\Leftrightarrow \left[\begin{aligned}2x+3\sqrt{1-x}= 0 (3) \\2x-9\sqrt{1-x}= 0 (4) \end{aligned}\right.$
    $(3) \Leftrightarrow 2x = -3\sqrt{1-x} (5)$ 
    Điều kiện $ x \le 0$ 
    $(5) \Rightarrow 4x^2 = 9(1-x)$
    $\Leftrightarrow 4x^2+9x-9=0$
    Giải phương trình bậc hai ta có hai nghiệm $ x= -3 $ và $x=\frac{3}{4}$
    Kết hợp điều kiện $ x \le 0$  ta nhận nghiệm $ x= -3 $
    $(4) \Leftrightarrow 2x = 9\sqrt{1-x} (6)$ 
    Điều kiện $ x \ge 0$ kết hợp điều kiện ban đầu ta có điều kiện cho x là $ 0 \le x \le 1$
    $(6) \Rightarrow 4x^2 = 81(1-x)$
    $\Leftrightarrow 4x^2+81x-81=0$
    Giải phương trình bậc hai ta có hai nghiệm $x=-\frac{81}{8}-\frac{9\sqrt{97}}{8}$ và $x=-\frac{81}{8}+\frac{9\sqrt{97}}{8}$
    Kiểm tra điều kiện  $ 0 \le x \le 1$ ta chỉ nhận nghiệm $x=-\frac{81}{8}+\frac{9\sqrt{97}}{8}$
    Vậy phương trình đã cho có 3 nghiệm:
    $x_1=-1$; $x_2=-3$; $x_3=-\frac{81}{8}+\frac{9\sqrt{97}}{8}$

    24/05/2025

    Câu 6, Thi vào lớp 10 chuyên Hà Tĩnh, năm 2024-2025

    Đề:
    Trong hình lục giác đều có cạnh bằng 4 có 257 điểm phân biệt. Chứng minh rằng tồn tại hình vuông có cạnh bằng 1 chứa ít nhất 5 điểm (có thể thuộc cạnh hình vuông) trong các điểm đã cho.
    Lời giải:
    Đặt lục giác đều vào bên trong 1 hình vuông có cạnh là 8. Do khoảng cách xa nhất giữa hai điểm trên lục giác đều là 8 nên lục giác đều nằm trọn vẹn trong hình vuông này. 
    Kẻ các đường thẳng song song với các cạnh của hình vuông để tạo thành lưới 8 x 8 = 64 hình vuông có cạnh bằng 1. 
    Do 257 = 64.4 + 1 nên theo nguyên tắc Dirichlet thì sẽ tồn tại 1 hình vuông chứa ít nhất là 4 + 1 = 5 điểm trong 257 điểm này.