Tìm tất cả các nghiệm nguyên dương của phương trình: $x(x-y-1)+y(y-1)=3$
Lời giả:
$x(x-y-1)+y(y-1)=3$
$\Leftrightarrow x^2-(y+1)x+y^2-y-3=0$
Giải phương trình bậc hai theo nghiệm x. Ta có: $\Delta = (y+1)^2 -4(y^2-y-3) = (y^2+2y+1)-4y^2+4y+12 = -3y^2+6y+13$
Để phương trình có nghiệm x thì $\Delta \ge 0$
$\Leftrightarrow -3y^2+6y+13 \ge 0$
$\Leftrightarrow 1-\frac{4}{\sqrt{3}} \le y \le 1+\frac{4}{\sqrt{3}}$
Do y là số nguyên dương nên $y=1,2,3$ Thay giá trị của y lần lượt vào công thức tính x:$x=\frac{y+1 \pm \sqrt{-3y^2+6y+13}}{2}$
- $y=1$ thì $x=-1 \lor x=3$ vì x là số nguyên dương nên chọn nghiệm $x=2$
- $y=2$ thì $x=\frac{3\pm\sqrt{13}}{2}$ vì x là số nguyên dương nên loại cả hai nghiệm này.
- $y=3$ thì $x=1 \lor x=3$ cả hai đều là số nguyên dương nên ta nhận cả hai nghiệm này.