Hiển thị các bài đăng có nhãn 2025. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn 2025. Hiển thị tất cả bài đăng

25/05/2025

Câu 4, Thi tuyển lớp 10 chuyên Bạc Liêu năm học 2025-2026

Đề:
Tìm tất cả các nghiệm nguyên dương của phương trình: $x(x-y-1)+y(y-1)=3$
Lời giả:
$x(x-y-1)+y(y-1)=3$
$\Leftrightarrow x^2-(y+1)x+y^2-y-3=0$
Giải phương trình bậc hai theo nghiệm x. Ta có: $\Delta = (y+1)^2 -4(y^2-y-3) = (y^2+2y+1)-4y^2+4y+12 = -3y^2+6y+13$
Để phương trình có nghiệm x thì $\Delta \ge 0$
$\Leftrightarrow -3y^2+6y+13 \ge 0$
$\Leftrightarrow 1-\frac{4}{\sqrt{3}} \le y \le 1+\frac{4}{\sqrt{3}}$
Do y là số nguyên dương nên $y=1,2,3$ Thay giá trị của y lần lượt vào công thức tính x:$x=\frac{y+1 \pm \sqrt{-3y^2+6y+13}}{2}$
  • $y=1$ thì $x=-1 \lor x=3$ vì x là số nguyên dương nên chọn nghiệm $x=2$
  • $y=2$ thì $x=\frac{3\pm\sqrt{13}}{2}$ vì x là số nguyên dương nên loại cả hai nghiệm này.
  • $y=3$ thì $x=1 \lor x=3$ cả hai đều là số nguyên dương nên ta nhận cả hai nghiệm này.
Vậy phương trình đã cho có 3 nghiệm nguyên dương:$(1;3),(3;3),(3;1)$

Câu 1b, Thi 10 Chuyên Bạc Liêu năm học 2025-2026

Đề: Cho x,y,z dương thỏa mãn $xyz=1$
Tính giá trị biểu thức $P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}$
Bài giải: $P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1} (1)$
Biến đổi P như sau:
$P=\frac{\sqrt{x}.\sqrt{z}}{(\sqrt{xy}+\sqrt{x}+1).\sqrt{z}}+\frac{\sqrt{y}.\sqrt{x}}{(\sqrt{yz}+\sqrt{y}+1).\sqrt{x}}+\frac{\sqrt{z}.\sqrt{y}}{(\sqrt{xz}+\sqrt{z}+1).\sqrt{y}}$
$=\frac{\sqrt{xz}}{1+\sqrt{xz}+\sqrt{z}}+\frac{\sqrt{xy}}{1+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{yz}}{1+\sqrt{yz}+\sqrt{y}}$
$P=\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1} (2)$
Biến đổi P theo cách khác:
$P=\frac{\sqrt{x}.\sqrt{yz}}{(\sqrt{xy}+\sqrt{x}+1).\sqrt{yz}}+\frac{\sqrt{y}.\sqrt{xz}}{(\sqrt{yz}+\sqrt{y}+1).\sqrt{xz}}+\frac{\sqrt{z}.\sqrt{xy}}{(\sqrt{xz}+\sqrt{z}+1).\sqrt{xy}}$
$=\frac{1}{\sqrt{y}+1+\sqrt{yz}}+\frac{1}{\sqrt{z}+1+\sqrt{xz}}+\frac{1}{(\sqrt{x}+1+\sqrt{xy}}$
$P=\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1} (3)$
Cộng (1), (2) và (3) vế theo vế ta có:
$3P=(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1})$ $+(\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1})$ $+(\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1}) $
$=(\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{xy}+\sqrt{x}+1})+$ $(\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1})+$ $(\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1})$
$=1+1+1=3$
$\Rightarrow P = 1$
Đáp số:$P=1$

Câu 1a, Thi 10 Chuyên Bạc Liêu năm học 2025-2026

 Đề:

Rút gọn biểu thức $A=\sqrt{8+2\sqrt{15}}+\sqrt{7-4\sqrt{3}}-\sqrt{5}$

Lời giải:
$A=\sqrt{8+2\sqrt{15}} +\sqrt{7-4\sqrt{3}}-\sqrt{5}$
$=\sqrt{3+2\sqrt{3}\sqrt{5}+5}+\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{5}$
$=\sqrt{(\sqrt{3})^2+2\sqrt{3}\sqrt{5}+(\sqrt{5})^2}+\sqrt{2^2-2.2.\sqrt{3}+(\sqrt{3})^2}-\sqrt{5}$
$=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(2-\sqrt{3})^2}-\sqrt{5}$
$=(\sqrt{3}+\sqrt{5})+(2-\sqrt{3})-\sqrt{5}$
$=2$
Đáp số: $A=2$