30/05/2025

Câu 2b, thi tuyển lớp 10 chuyên Bạc Liêu, năm học 2025-2026

 Đề:

Cho a,b,c dương thỏa $abc(a+b+c)=1$. Tìm giá trị nhỏ nhất của biểu thức:
$S=\frac{a^6}{a^4+3b^4}+\frac{b^6}{b^6+3c^6}+\frac{c^6}{c^6+3a^6}$

Lời giải:

Ta không thể áp dụng bất đẳng thức AM-GM trực tiếp cho biểu thức dưới mẫu vì ngược chiều bất đẳng thức, do đó ta phải biến đổi: 
$S=\frac{a^6}{a^4+3b^4}+\frac{b^6}{b^6+3c^6}+\frac{c^6}{c^6+3a^6}$

$=a^2-\frac{3a^2b^4}{a^4+3b^4}+b^2-\frac{3b^2c^4}{b^6+3c^6}+c^2-\frac{3c^2a^4}{c^6+3a^6}$

Ta có:

$a^4+3b^4 = a^4+b^4+b^4+b^4 \ge 4\sqrt[4]{a^4.b^4.b^4.b^4}$ (Dấu "=" xảy ra khi và chỉ khi a=b)

$\Rightarrow a^4+3b^4 \ge 4ab^3$

$\Rightarrow \frac{3a^2b^4}{a^4+3b^4} \le \frac{3a^2b^4}{4ab^3}=\frac{3}{4}ab \le \frac{3}{4} \frac{a^2+b^2}{2} =\frac{3}{8}(a^2+b^2)$

 (Dấu "=" xảy ra khi và chỉ khi a=b)

Tương tự ta có:

$\frac{3b^2c^4}{b^6+3c^6} \le \frac{3}{8}(b^2+c^2)$  (Dấu "=" xảy ra khi và chỉ khi b=c)

$\frac{3c^2a^4}{c^6+3a^6} \le  \frac{3}{8}(c^2+a^2)$ (Dấu "=" xảy ra khi và chỉ khi c=a)

Từ đây ta có:

$ S =a^2-\frac{3a^2b^4}{a^4+3b^4}+b^2-\frac{3b^2c^4}{b^6+3c^6}+c^2-\frac{3c^2a^4}{c^6+3a^6}$

$\ge a^2-\frac{3}{8}(a^2+b^2)+b^2-\frac{3}{8}(b^2+c^2)+c^2-\frac{3}{8}(c^2+a^2)$

$=\frac{1}{4}(a^2+b^2+c^2)$
(Dấu "=" xảy ra khi và chỉ khi a=b=c)
Ngoài ra ta có:
$a^2+b^2+c^2 \ge \frac{1}{3}(a+b+c)^2$ và $(a^2+b^2+c^2)^3 \ge 3^3 (abc)^2$

(Dấu "=" xảy ra khi và chỉ khi a=b=c)
$\Rightarrow (a^2+b^2+c^2)^4 \ge 3^2 [abc (a+b+c)]^2 =3^2$

(Dấu "=" xảy ra khi và chỉ khi $a=b=c=\frac{1}{\sqrt[4]{3}}$)

$\Rightarrow a^2+b^2+c^2 \ge \sqrt{3}$

Vậy $S \ge \frac{1}{4}(a^2+b^2+c^2) \ge \frac{\sqrt{3}}{4}$
$S_\text{min}=\frac{\sqrt{3}}{4}$ khi $a=b=c=\frac{1}{\sqrt[4]{3}}$



Bài viết liên quan



Không có nhận xét nào:

Đăng nhận xét