05/10/2025

Toán HSG THCS: Tính giá trị biểu thức

Đề:
Cho $a,b,c \ge 0 $ thỏa mãn:
$\left \lbrace \begin{aligned}& a^3+1 = b^2 + c \\& b^3 + 1 = c^2 + a \\& c^3 + 1 = a^2 + b \end{aligned}\right.$
Tính $P = (a+1)(b+1)(c+1)$

Bài giải:
Từ:
$\left \lbrace \begin{aligned}& a^3+1 = b^2 + c \\& b^3 + 1 = c^2 + a \\& c^3 + 1 = a^2 + b \end{aligned}\right.$
Cộng vế theo vế 3 đẳng thức ta có:
$a^3+1+b^3+1+c^3+1=a^2+b^2+c^2+a+b+c$
$\Leftrightarrow (a^3-a^2-a+1)+(b^3-b^2-b+1)+(c^3-c^2-c+1)=0$
$\Leftrightarrow (a+1)(a-1)^2+(b+1)(b-1)^2+(c+1)(c-1)^2=0$ (1)
Vì $a \ge 0$ nên $ a+1 > 0$
Do đó $(a+1)(a-1)^2 \ge 0$ Dấu "=" xảy ra khi $a=1$
Tương tự $(b+1)(b-1)^2 \ge 0$ và $(c+1)(c-1)^2 \ge 0$
Suy ra $ (a+1)(a-1)^2+(b+1)(b-1)^2+(c+1)(c-1)^2 \ge 0 $ (2)
Kết hợp (1) và (2) suy ra $a=b=c=1$
Vậy $P = (a+1)(b+1)(c+1) = (1+1)(1+1)(1+1) = 8$
Đáp số: $P=8$

Bài viết liên quan



Không có nhận xét nào:

Đăng nhận xét