Đề:
Tính:
$A=\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}$
Bài giải:
Ta có:
$2\frac{3^2}{5.14} = \frac{3^2}{5.7}=\frac{3^2}{2}(\frac{1}{5}-\frac{1}{7})$
$2\frac{3^2}{7.18} = \frac{3^2}{7.9}=\frac{3^2}{2}(\frac{1}{7}-\frac{1}{9})$
$2\frac{3^2}{9.22} = \frac{3^2}{9.11}=\frac{3^2}{2}(\frac{1}{9}-\frac{1}{11})$
$2\frac{3^2}{11.26} = \frac{3^2}{11.13}=\frac{3^2}{2}(\frac{1}{11}-\frac{1}{13})$
$2\frac{3^2}{13.30} = \frac{3^2}{13.15}=\frac{3^2}{2}(\frac{1}{13}-\frac{1}{15})$
Cộng vế theo vế các đẳng thức trên ta có:
$\require{cancel}2A=\frac{3^2}{2}(\frac{1}{5}-\frac{1}{7})+\frac{3^2}{2}(\frac{1}{7}-\frac{1}{9})+\frac{3^2}{2}(\frac{1}{9}-\frac{1}{11})+\frac{3^2}{2}(\frac{1}{11}-\frac{1}{13})+\frac{3^2}{2}(\frac{1}{13}-\frac{1}{15})$
$=\frac{3^2}{2}(\frac{1}{5}-\cancel{\frac{1}{7}}+\cancel{\frac{1}{7}}-\cancel{\frac{1}{9}}+\cancel{\frac{1}{9}}-\cancel{\frac{1}{11}}+\cancel{\frac{1}{11}}-\cancel{\frac{1}{13}}+\cancel{\frac{1}{13}}-\frac{1}{15})$
$=\frac{3^2}{2}(\frac{1}{5}-\frac{1}{15})$
$=\frac{3^2}{2}(\frac{3}{15}-\frac{1}{15})$
$=\frac{3^2}{2}\frac{3-1}{15}$
$=\frac{3^2}{2}\frac{2}{15}$
$=\frac{3}{5}$
Vậy $A=\frac{3}{10}$
Không có nhận xét nào:
Đăng nhận xét