Đề bài:
Tìm x biết:
$\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+\cdots+\frac{x}{2020.2021}=-1$
Bài giải:
$\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+\cdots+\frac{x}{2020.2021}=-1$
$\iff x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{2020.2021})=-1$
$\require{cancel}\iff x(\frac{1}{1}-\cancel{\frac{1}{2}}+\cancel{\frac{1}{2}}-\cancel{\frac{1}{3}}+\cancel{\frac{1}{3}}-\cancel{\frac{1}{4}}+\cdots+\cancel{\frac{1}{2020}}-\frac{1}{2021})=-1$
$\iff x (\frac{1}{1} -\frac{1}{2021}) = -1 $
$\iff x (\frac{2021}{2021} -\frac{1}{2021}) = -1 $
$\iff x \frac{2021-1}{2021} = -1 $
$\iff x \frac{2020}{2021} = -1 $
$\iff x = -\frac{2021}{2020} $
Không có nhận xét nào:
Đăng nhận xét