14/06/2025

Câu 5 a, Thi tuyển lớp 10 2025, môn Toán Chuyên, Quảng Bình

 Đề: 

Tìm tất cả các cặp số nguyên $(x;y)$ thỏa mãn phương trình:

$(x-y)(x+y)+x^2(1-y)=17-2y$

Bài giải:

$(x-y)(x+y)+x^2(1-y)=17-2y$

$\Leftrightarrow (x^2-y^2)+(x^2-x^2y)+2y=17$

$\Leftrightarrow (2x^2-x^2y)+(2y-y^2)=17$

$\Leftrightarrow x^2(2-y)+y(2-y)=17$

$\Leftrightarrow (x^2+y)(2-y)=17$

Có 4 trường hợp sau:
+ Trường hợp 1:
$\left \lbrace \begin{aligned}&x^2+y=1 \\&2-y=17\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&x^2=16 \\&y=-15\end{aligned}\right.$

$\Leftrightarrow \left\lbrack\begin{aligned} \left \lbrace \begin{aligned}&x=4 \\&y=-15\end{aligned}\right.\\ \left \lbrace \begin{aligned}&x=-4 \\&y=-15\end{aligned}\right. \end{aligned}\right.$

+ Trường hợp 2:

$\left \lbrace \begin{aligned}&x^2+y=17 \\&2-y=1\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&x^2=16 \\&y=1\end{aligned}\right.$

$\Leftrightarrow \left\lbrack\begin{aligned} \left \lbrace \begin{aligned}&x=4 \\&y=1\end{aligned}\right.\\ \left \lbrace \begin{aligned}&x=-4 \\&y=1\end{aligned}\right. \end{aligned}\right.$

+ Trường hợp 3:

$\left \lbrace \begin{aligned}&x^2+y=-1 \\&2-y=-17\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&x^2=-20 \\&y=19\end{aligned}\right.$

=> Vô nghiệm vì $x^2 \ge 0 $

+ Trường hợp 4:

$\left \lbrace \begin{aligned}&x^2+y=-17 \\&2-y=-11\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&x^2=-20 \\&y=3\end{aligned}\right.$

=> Vô nghiệm vì $x^2 \ge 0 $
Như vậy các cặp số nguyên $(x;y)$ cần tìm là $(-4;-15),(4;-15),(-4;1),(4;1)$

Bài tìm nghiệm nguyên lớp 9 hay

 Đề:

Tìm nghiệm nguyên dương của phương trình $3^x-32=y^2$

Bài giải:

Ta có y chia cho 4 dư 0,1,2,3 suy ra $y^2$ chia cho 4 dư 0 hoặc 1.
Mà 32 chia hết cho 4 nên suy ra $3^x$ chia cho 4 dư 0 hoặc 1.
Ta có $3 \equiv -1 \pmod 4$
$\Rightarrow 3^x \equiv (-1)^x \pmod 4$
$\Rightarrow$ x là số chẵn.
Đặt $x=2k$ (k là số nguyên dương)
Thay vào phương trình đã cho ta có:
$3^{2k}-32=y^2$
$\Leftrightarrow (3^k)^2-y^2=32$

$\Leftrightarrow (3^k-y)(3^k+y)=32$

Vì y, k là các số nguyên dương nên:
$3^k+y > 3^k-y > 1$
Có hai trường hợp xảy ra:

+ Trường hợp 1:
$\left \lbrace \begin{aligned}&3^k+y=16 \\&3^k-y = 2\end{aligned}\right.$

$\Leftrightarrow \left \lbrace \begin{aligned}&k=2 \\&y = 7\end{aligned}\right.$

$\Rightarrow \left \lbrace \begin{aligned}&x=4 \\&y = 7\end{aligned}\right.$
Thử lại ta thấy nghiệm này thỏa mãn phương trình đã cho 
+ Trường hợp 2:
$\left \lbrace \begin{aligned}&3^k+y=8 \\&3^k-y = 4\end{aligned}\right.$
Hệ phương trình này không có nghiệm nguyên.
Vậy phương trình đã cho có nghiệm $(x;y)$ nguyên dương là $(4;7)$


12/06/2025

Câu 5, Kỳ thi tuyển sinh lớp 10 năm 2025, Môn Toán (Chuyên Toán + Chuyên Tin), Long An

 Đề:

Cho n,m  là các số tự nhiên và $n^4+m^4$ chia hết cho 5. Tìm số dư khi chia $n^{2025}+m^{2025}$ cho 5.

Bài giải:

Đầu tiên ta đi tìm số dư của số tự nhiên a cho 5.
Ta có $a \equiv k \pmod 5$ với k là số tự nhiên thỏa $0\le k \le 4$

Suy ra $a^4  \equiv k^4 \pmod 5$

k$k^4$$k^4\ \text{mod}\ 5$
000
111
2161
3811
42561

Vậy  $a^4  \equiv 0 \pmod 5$ nếu a chia hết cho 5 và $a^4  \equiv 1 \pmod 5$ nếu a không chia hết cho 5.
Kết hợp giả thiết $n^4+m^4$ chia hết cho 5. Ta suy ra cả n và m phải chia hết cho 5.
Từ đó ta suy ra $n^{2025}+m^{2025}$ chia hết cho 5. Hay nói cách khác số dư khi chia $n^{2025}+m^{2025}$ cho 5 là 0.

08/06/2025

Câu 2 a) Môn Toán, Thi vào lớp 10 chuyên Hùng Vương Phú Thọ năm 2025

 Đề:

Cho p là số nguyên tố ; a,b là các số nguyên dương thỏa mãn: $\frac{p}{a}+\frac{p}{b}=1$ và $a+b$ chia hết cho p. Chứng minh rằng $\frac{a+b}{p}=4$

Bài giải:
Do $a+b$ chia hết cho p nên ta đặt $a+b=pk$ với k là số nguyên dương.
hay $a = pk - b$ .

Ngoài ra $\frac{p}{a}+\frac{p}{b}=1$ 

$\Leftrightarrow p(a+b) = ab$

$\Rightarrow p^2k=ab=(pk-b)b=pkb-b^2$

$\Rightarrow b^2-pkb+p^2k=0$

Giải phương trình bậc hai theo b. Tính $\Delta=(-pk)^2-4(p^2k)=p^2(k^2-4k)$
$\Delta \ge 0 \Leftrightarrow k \ge 4$ (do k là số nguyên dương)
Do b là số nguyên dương nên $\Delta$ phải là số chính phương $\Rightarrow k^2-4k$ phải là số chính phương
$  k^2-4k + (16-4k)  \le k^2-4k < k^2-4k+4 \Rightarrow (k-4)^2 \le k^2-4k < (k-2)^2$
Vì $k^2-4k$ là số chính phương nên:
$k^2-4k = (k-3)^2 \lor k^2-4k = (k-4)^2$

$\Leftrightarrow k=\frac{9}{2} \lor k = 4$
Do k là số nguyên dương và $k\ge 4$ nên ta chọn $k=4$
Với $k=4$ thì $\Delta =0 $ và $b=2p \Rightarrow a=2p$
Vậy $a+b=4p \Leftrightarrow \frac{a+b}{p}=4$ (đpcm)



07/06/2025

Câu 3 b) Môn Toán-Chuyên, Thi vào lớp 10 ĐắkLắk năm 2025

 Đề:

Tìm x,y nguyên dương và số nguyên tố p thỏa $x^5+x^4+1=p^y$

Bài giải:
Ta có: $x^5+x^4+1=p^y$
$(x^3-x+1)(x^2+x+1)=p^y$
$\Rightarrow x^3-x+1 = p^m \land x^2+x+1 = p^n $ (với $m+n=y$ và $m,n \ge 0$)
Nếu $x \ge 3$ thì ta có:
$x^3-x+1 =(x^3-1) - (x-2) = (x-1)(x^2+x+1)-(x-2) > x^2+x+1 $

$\Rightarrow p^m > p^n$ hay $m > n$  suy ra $p^m \ \vdots \ p^n \Rightarrow x^3-x+1\ \vdots\  x^2+x+1$
Mà: $x^3-x+1 =  (x-1)(x^2+x+1)-(x-2) $

Suy ra $x-2 \ \vdots \ x^2+x+1$ (1)
Nhưng với $x \ge 3$ thì $0 < x-2 < x^2+x+1$ (2)
Từ (1) và (2) ta thấy điều vô lý. Vậy $x < 3$
Thay lần lượt x=1 và x=2 vào đẳng thức đã cho ta tìm dược hai bộ số (x,y,p) thỏa mãn đề bài là:
$(1,1,3);(2;2;7)$  

Bài 3, câu 2, Chuyên Toán, Thi tuyển lớp 10 Bình Định năm 2025

 Đề:

Tìm tất cả các cặp số nguyên tố $(\alpha,\beta)$ sao cho $\alpha^2+6\alpha\beta+\beta^2+45$ là một số chính phương

Bài giải:
Do $\alpha$ và $\beta$ là số nguyên tố nên nếu $\alpha > 3$ và $\beta > 3$ thì 

$\alpha^2 \equiv 1 \pmod 3$ và $\beta ^2 \equiv 1 \pmod 3$

$\Rightarrow \alpha^2+6\alpha\beta+\beta^2+45 \equiv 2 \pmod 3$ vô lý vì số chính phương chia cho 3 dư 0 hoặc 1.
Do đó $\alpha$ và $\beta$ phải có 1 số nhỏ hơn hay bằng 3. Do vai trò như nhau ta giả sử số đó là $\alpha$

☼ Xét  $\alpha = 2 $ biểu thức đã cho thành $\beta^2+12\beta+49$. Mà:
 $\beta^2+12\beta+36<\beta^2+12\beta+49 < \beta^2+14\beta+49$

$\Rightarrow (\beta+6)^2 <\beta^2+12\beta+49< (\beta+7)^2$
Do đó không tồn tại $\beta$ để $\beta^2+12\beta+49$ là số chính phương 

☼ Xét  $\alpha = 3 $ biểu thức đã cho thành $\beta^2+18\beta+54$. Mà:
$\beta^2+14\beta +49 <\beta^2+18\beta+54 < \beta^2+18\beta+81$

$\Rightarrow (\beta+7)^2 < \beta^2+18\beta+54 <(\beta+9)^2$

Mà $\beta^2+18\beta+54$ là số chính phương nên:
$\beta^2+18\beta+54 = (\beta+8)^2$
$\Leftrightarrow \beta=5$
Vậy có hai cặp số nguyên tố $(\alpha,\beta)$ thỏa mãn đề bài là $(3,5);(5;3)$

Bài 3, câu 2, Toán chuyên tin, thi lớp 10 Bình Định năm 2025

 Đề:

Tìm tất cả các cặp số nguyên tố $(\alpha, \beta)$ sao cho $\alpha^2=6\beta^2+1$

Bài giải:

Ta có:$\alpha^2=6\beta^2+1$

$\Leftrightarrow \alpha^2-1=6\beta^2$

$\Leftrightarrow (\alpha-1)(\alpha+1)=6\beta^2$

Do $\alpha-1$ và $\alpha+1$ hoặc cùng chẵn hoặc cùng lẻ mà: $6\beta^2$ là số chẵn 

Nên $\alpha-1$ và $\alpha+1$ phải cùng là số chẵn hay $(\alpha-1)(\alpha+1) \ \vdots\ 4$

$\Rightarrow 6\beta^2 \ \vdots\  4$
Từ đây suy ra $\beta^2$ phải là số chẵn 

mà $\beta$ là số nguyên tố nên $\beta=2$

Thay vào biểu thức ban đầu ta tính được $\alpha = 5$

Vậy có 1 cặp số nguyên tố $(\alpha, \beta)$ thỏa mãn đẳng thức đã cho là $(5,2)$

04/06/2025

Câu II 1) Thi tuyển lớp 10 chuyên Đại học Khoa học Tự Nhiên (Hà Nội) năm 2025


 Đề:

Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn:

$25^y+(4^x+1)(4x^2+3x+3)=(4^x+4x^2+3x+4)5^y$

Bài giải:

$25^y+(4^x+1)(4x^2+3x+3)=(4^x+4x^2+3x+4)5^y$

$\Leftrightarrow (5^2)^y+(4^x+1)(4x^2+3x+3)-[(4^x+1)+(4x^2+3x+3)]5^y=0$

$\Leftrightarrow [(5^y)^2-(4^x+1)5^y]+[(4^x+1)(4x^2+3x+3)-(4x^2+3x+3)5^y]=0$

$\Leftrightarrow 5^y[5^y-(4^x+1)]+(4x^2+3x+3)[(4^x+1)-5^y]=0$

$\Leftrightarrow [5^y-(4^x+1)][5^y-(4x^2+3x+3)]=0$

$\Leftrightarrow \left\lbrack\begin{aligned} 5^y-(4^x+1)=0 (1)\\ 5^y-(4x^2+3x+3)=0 (2) \end{aligned}\right.$

  • Xét phương trình (1): $(1) \Leftrightarrow 5^y = 4^x+1 (3)$
    Ta có: $4 \equiv 1 \pmod 3 \Rightarrow 4^x \equiv 1 \pmod 3  \Rightarrow 4^x+1 \equiv 2 \pmod 3$
    Suy ra y phải là số lẻ (vì nếu y là số chẵn thì $5^y \equiv 1 \pmod 3$)
    Đặt $y=2k+1, k=0,1,2,...$, thay vào (3), ta có:
    $5^{2k+1} = 4^x+1 \Leftrightarrow 5.25^k= 4^x+1$
    Vì $25 \equiv 1 \pmod 8 \Rightarrow 5.25^k \equiv 5 \pmod 8$ 
    Nếu $x \ge 2 \Rightarrow 4^x + 1 = 16.4^{x-2} + 1  \equiv 1 \pmod 8$ (vô lý)
    Vậy $x=1 \Rightarrow y=1$ 
  • Xét phương trình (2):$(2) \Leftrightarrow 5^y = 4x^2+3x+3 (4)$
    Do $4x^2+3x+3 = x^2 + 3x^2+3x+3 \equiv x^2 \pmod 3 \Rightarrow 5^y \equiv x^2 \pmod 3$ 
    Mà số chính phương thì chia cho 3 dư 0 hoặc 1 suy ra y phải là số chẵn. Đặt $y=2k$
    $(4) \Leftrightarrow 5^{2k}= 4x^2+3x+3$
    $\Leftrightarrow (5^k)^2 = 4x^2+3x+3 $ 
    $\Rightarrow 4x^2+3x+3$ là số chính phương
    Mà $(2x)^2 < 4x^2+3x+3 < 4x^2+3x+3 + 5x+1 $
    $= (2x)^2+2.2x.2+2^2 = (2x+2)^2$
    Suy ra: $4x^2+3x+3 = (2x+1)^2$
    $\Leftrightarrow4x^2+3x+3=4x^2+4x+1$
    $\Leftrightarrow x=2 \Rightarrow y=2$
Vậy các cặp số nguyên dương (x;y) cần tìm là $(1;1),(2;2)$


Câu I 2) Thi tuyển lớp 10 chuyên Đại học Khoa học Tự Nhiên (Hà Nội) năm 2025

 Đề: 

Giải hệ phương trình:

$\left \lbrace \begin{aligned}&x+y+xy=3 \\&1+12(x+y)= 7y^3+6xy(y+3-xy)\end{aligned}\right.$

Bài giải:

Đánh số các phương trinh trong hệ: 

$\left \lbrace \begin{aligned}&x+y+xy=3 (1) \\&1+12(x+y)= 7y^3+6xy(y+3-xy) (2) \end{aligned}\right.$

Ta đi biến đổi phương trình (2) và sử dụng phương trình (1). Lưu ý hằng đẳng thức:

$(a+b)^3=a^3+3a^2b+3ab^2+b^3$

$(2)\Leftrightarrow (x^3+y^3)+1+12(x+y)= (x^3+y^3)+7y^3+6xy(y+3-xy) (3)$

$ \text{VP PT (3)} = 8y^3+6xy[y+(x+y-xy)-xy]+x^3$

$=(2y)^3+6xy(2y+x)+x^3$

$=(2y)^3+3.(2y)^2.x+3.(2y).x^2+x^3=(2y+x)^3$

$ \text{VT PT (3)} = [(x+y)^3-3x^2y-3xy^2]+[3(x+y)^2-3(x+y)^2]+$

$3(x+y)+9(x+y)+1=[(x+y)^3+3.(x+y)^2+3(x+y)+1]-$

$[3x^2y+3xy^2+3(x+y)^2-9(x+y)]$

$=(x+y+1)^3-3[xy(x+y)+(x+y)^2-3(x+y)]$

$=(x+y+1)^3-3(x+y)(xy+x+y-3)=(x+y+1)^3$

Vậy $(3)\Leftrightarrow (2y+x)^3=(x+y+1)^3$

$\Leftrightarrow 2y+x = x+y+1$

$\Leftrightarrow y = 1$

Thay vào (1) ta tìm được $x=1$

Vậy hệ phương trình đã cho có nghiệm là $(1;1)$