10/06/2017

Câu 5, Lớp 10, ĐHSP Hà Nội 2017


Đề:
Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có 3 góc nhọn. Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại P. Gọi D,E là chân các đường vuông góc hạ từ P xuống AB, AC và M là trung điểm BC.
1) Chứng minh $\widehat{MEP} = \widehat{MDP}$
2) Giả sử B,C cố định và A chạy trên đường tròn (O) sao cho tam giác ABC luôn là tam giác có 3 góc nhọn.Chứng minh đường thẳng DE luôn đi qua một điểm cố định.
3) Khi tam giác ABC đều, hãy tính diện tích tam giác ADE theo R.
Bài giải:

1) Tam giác cân OBC có OM vừa là trung tuyến, vừa là đường cao. $OM \perp BC$
◿OBP = ◿ OCP bởi vì OB=OC=R, OP chung
$\Rightarrow PB = PC $
$ \Rightarrow \triangle PBC $ là tam giác cân tại P
$ \Rightarrow PM \perp BC$ và $\widehat{BPM} = \widehat{CPM}$ (1)
Tứ giác PMBD là tứ giác nội tiếp vì có hai góc đối là hai góc vuông.
$ \Rightarrow \widehat{BDM} = \widehat{BPM} $ (Góc nội tiếp cùng chắn cung BM) (2)
Tương tự tứ giác PMCE cũng là tứ giác nội tiếp vì có hai góc đối là hai góc vuông.
$ \Rightarrow \widehat{CEM} = \widehat{CPM} $ (Góc nội tiếp cùng chắn cung CM) (3)
Từ (1),(2), (3) ta suy ra:
$\widehat{BDM} = \widehat{CEM} $
$\Rightarrow \widehat{MEP} = \widehat{MDP}$
2) Gọi F là giao điểm của OP và DE. Vì B,C, (O) cố định nên P là cố định.
Do đó OP là cố định. Ta chứng minh F là cố định.
$\widehat{CAB} = \widehat{PBM} $ (Góc nội tiếp cùng chắn cung BC) (4)
Từ (2) và (4) ta suy ra:
$\widehat{CAB} + \widehat{BDM} = 90^o$
$\Rightarrow DM \perp AC $
$\Rightarrow DM // PE $
Chứng minh tương tự ta có EM // PD
Vậy tứ giác MDPE là hình bình hành hay F là trung điểm của MP. Hay F là cố định.
3) Khi tam giác ABC đều. $S_{\triangle ABC} =\frac{3\sqrt{3}R^2}{4}$
 $S_{\triangle ADE} = \frac{1}{2}*AF*DE= \frac{1}{2}*\frac{3}{2}AM*\frac{3}{2}BC=\frac{9}{4}*S_{\triangle ABC}=\frac{27\sqrt{3}R^2}{16}$

03/06/2017

Câu 1, Lớp 10, ĐHSP Hà Nội 2017


Đề:
Cho biểu thức:
$P = \frac{a^3-a-2b-\frac{b^2}{a}}{(1-\sqrt{\frac{1}{a}+\frac{b}{a^2}})(a+\sqrt{a+b})}:(\frac{a^3+a^2+ab+a^2b}{a^2-b^2}+\frac{b}{a-b}) $
với a>b, b>0, $a \neq b$, $a+b \neq a^2$

1. CMR: P=a-b
2. Tìm a,b biết rằng P=1 và $a^3-b^3=7$

Bài làm:
1. $M = \frac{a^3+a^2+ab+a^2b}{a^2-b^2}+\frac{b}{a-b}$
 $= \frac{a^3+a^2+ab+a^2b+b(a+b)}{a^2-b^2}$
$= \frac{a^3+a^2+2ab+a^2b+b^2}{a^2-b^2}$
$= \frac{a^3+a^2b+a^2+2ab+b^2}{a^2-b^2}$
$= \frac{a^2(a+b)+(a+b)^2}{a^2-b^2}$
$= \frac{(a+b)(a^2+a+b)}{a^2-b^2}$
Do a> 0, b> 0, nên $a+b \neq 0 $ 
$M = \frac{a^2+a+b}{a-b}$ 
$T = \frac{a^3-a-2b-\frac{b^2}{a}}{(1-\sqrt{\frac{1}{a}+\frac{b}{a^2}})(a+\sqrt{a+b})}$
$=\frac{a^4-a^2-2ab-b2}{(a-\sqrt{a+b})(a+\sqrt{a+b})}$
$=\frac{a^4-a^2-2ab-b2}{a^2-(a+b)}$
$=\frac{(a^2)^2-(a+b)^2}{a^2-(a+b)}$
$=a^2+a+b$
Do đó:
$P = \frac{T}{M} = a -b$
2. $P = 1 \iff a-b = 1 \iff a = b+ 1$
$a^3-b^3 = 7$ 
$\iff (b+1)^3-b^3 = 7$ 
$\iff  3b^2+3b+1 = 7$ 
$\iff  b^2+b-2 = 0$ 
$\iff  b = 1 \vee b = -2$
Tuy nhiên b > 0 do đó $b = 1 \Rightarrow a= 2$
Đáp số: a=2, b=1

01/06/2017

Câu 6, Lớp 10, ĐHSP Hà Nội 2017

Đề:
Có các số thực không âm $x_1,x_2,...,x_9$ thoả mãn:

$\begin{cases} x_1+x_2+...+x_9 = 10 \\ x_1+2x_2+...+9x_9 = 18 \end{cases}$

CMR: $1.19x_1+2.18x_2+...+9.11x_9 \geq 270$, đẳng thức xảy ra khi nào?

Lời giải:
$S=1.19x_1+2.18x_2+...+9.11x_9$
$=(x_1+2x_2+...+9x9)+\frac{19x_1+18x_2+..+11x_9}{100}$
$=18+\frac{(19x_1+18x_2+..+11x9)-20(x_1+x_2+...+x_9)+20(x_1+x_2+...+x_9)}{100}$
$=18+\frac{20*10-(x_1+2x_2+...+9x_9)}{100}$
$=18+\frac{200-18}{100}$
$=19.82$
S=19.82. Tại sao đề lại yêu cầu chứng minh $S \geq 270$ rồi còn hỏi đẳng thức xảy ra khi nào nữa !!!

Câu 2, Lớp 10, ĐHSP Hà Nội 2017

Đề: 
Giả sử x, y là hai số thực phân biệt thoả mãn: $\frac{1}{x^2+1}+\frac{1}{y^2+1}=\frac{2}{xy+1}$
Hãy tính $S=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{2}{xy+1}$
Lời giải:
Từ $\frac{1}{x^2+1}+\frac{1}{y^2+1}=\frac{2}{xy+1}$
$\Rightarrow \frac{(x^2+1)+(y^2+1)}{(x^2+1)(y^2+1)}=\frac{2}{xy+1}$
$\Rightarrow (x^2+y^2+2)(xy+1) = 2(x^2+1)(y^2+1)$
$\Rightarrow x^3y+x^2+xy^3+y^2+2xy+2 = 2x^2y^2+2x^2+2y^2+2$
$\Rightarrow x^3y+x^2+xy^3+y^2+2xy+2 = 2x^2y^2+2x^2+2y^2+2$
$\Rightarrow x^3y+xy^3+2xy = 2x^2y^2+x^2+y^2$
$\Rightarrow x^3y+xy^3-2x^2y^2 = x^2+y^2-2xy$
$\Rightarrow xy(x^2-2xy+y^2) = x^2+y^2-2xy$
$\Rightarrow xy(x-y)^2 = (x-y)^2 (1)$
Do $x \ne y$ 
Nên $(1) => xy = 1 $
$S=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{2}{xy+1} = \frac{4}{xy+1} = \frac{4}{1+1} = 2 $