1 thg 6, 2017

Câu 6, Lớp 10, ĐHSP Hà Nội 2017

Đề:
Có các số thực không âm $x_1,x_2,...,x_9$ thoả mãn:

$\begin{cases} x_1+x_2+...+x_9 = 10 \\ x_1+2x_2+...+9x_9 = 18 \end{cases}$

CMR: $1.19x_1+2.18x_2+...+9.11x_9 \geq 270$, đẳng thức xảy ra khi nào?

Lời giải:
$S=1.19x_1+2.18x_2+...+9.11x_9$
$=(x_1+2x_2+...+9x9)+\frac{19x_1+18x_2+..+11x_9}{100}$
$=18+\frac{(19x_1+18x_2+..+11x9)-20(x_1+x_2+...+x_9)+20(x_1+x_2+...+x_9)}{100}$
$=18+\frac{20*10-(x_1+2x_2+...+9x_9)}{100}$
$=18+\frac{200-18}{100}$
$=19.82$
S=19.82. Tại sao đề lại yêu cầu chứng minh $S \geq 270$ rồi còn hỏi đẳng thức xảy ra khi nào nữa !!!

Không có nhận xét nào:

Đăng nhận xét

Related Posts Plugin for WordPress, Blogger...