28/05/2025

Bài II.2) Đề chọn học sinh giỏi Quận Hoàn Kiếm năm học 2023-2024

 Đề:

Tìm tất cả các cặp số nguyên (x;y) thỏa mãn $(x^2+3)y^2-y^3+2x^2=2y(2x^2-1)+3$

Bài giải:

$(x^2+3)y^2-y^3+2x^2=2y(2x^2-1)+3$

$\Leftrightarrow x^2y^2+3y^2-y^3+2x^2=4yx^2-2y+3$

$\Leftrightarrow x^2y^2-4yx^2+2x^2=y^3-3y^2-2y+3$

$\Leftrightarrow (y^2-4y+2)x^2=y^3-3y^2-2y+3 (1)$

Vì $y^2-4y+2 \ne 0  \forall y \in Z$ (hai nghiệm là số vô tỉ)

Nên $(1) \Leftrightarrow x^2 = \frac{y^3-3y^2-2y+3}{y^2-4y+2}$

$\Leftrightarrow x^2 = y+1 + \frac{1}{y^2-4y+2} (2)$ 

Vì $ x^2 \in Z \Rightarrow 1 \vdots y^2-4y+2 \Rightarrow y^2-4y+2 = 1 \lor y^2-4y+2 = -1$

* Xét $y^2-4y+2 = 1$

$\Leftrightarrow y^2-4y+1 = 0$ 

Giải phương trình bậc 2 này ta có hai nghiệm y: $2-\sqrt{3}$ và $2+\sqrt{3}$ không phải là số nguyên

* Xét $y^2-4y+2 = -1$

$\Leftrightarrow y^2-4y+3 = 0$ 

Phương trình có 2 nghiệm $y=1$ và $y=3$

+ y = 1, thay vào (2) ta có $x^2=1+1-1$

$\Leftrightarrow x^2=1$

$\Leftrightarrow x=\pm1$

+ y =3, thay vào (2) ta có $x^2=3+1-1$

 $x^2=3+1-1$

$\Leftrightarrow x^2=3$

$\Leftrightarrow x=\pm\sqrt{3}$ (loại vì $x \in Z$)

Vậy các bộ số $(x;y)$ cần tìm là $(1;1), (-1;1)$



00:6
2025-08-30

Câu 3b, Thi lớp 10 chuyên Hà Tĩnh, năm học 2024-2025

 Đề:

Tìm tất cả các số nguyên dương a,b,c thỏa mãn $(a+1)(b+1)(c+1)=3abc$
Bài giải:

Do vai trò a,b,c như nhau nên ta giả sử $a \ge b \ge c$, điều này có nghĩa là nếu ta tìm ra đáp số $(a_0;b_0;c_0)$ thì tất cả các hoán vị của bộ này : $(a_0;c_0;b_0),(b_0;a_0;c_0),(b_0;c_0;a_0),(c_0;a_0;b_0),(c_0;b_0;a_0)$ cũng thỏa mãn đẳng thức đã cho.  

Ta có:

$(a+1)(b+1)(c+1)=3abc$

$\Leftrightarrow \frac{(a+1)(b+1)(c+1)}{abc}=3$

$\Leftrightarrow (\frac{a+1}{a})(\frac{b+1}{b})(\frac{c+1}{c})=3$

$\Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})=3 (1) $

Từ  $a \ge b \ge c$

$\Rightarrow \frac{1}{a} \le \frac{1}{b} \le \frac{1}{c}$

$\Rightarrow 1+\frac{1}{a} \le 1+\frac{1}{b} \le 1+\frac{1}{c}$

$\Rightarrow 3=(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c}) \le (1+\frac{1}{c})^3$

$\Rightarrow 1+\frac{1}{c} \ge \sqrt[3]{3}$

$\Rightarrow \frac{1}{c} \ge \sqrt[3]{3} -1 $

$\Rightarrow c  \le \frac{1}{\sqrt[3]{3} -1} < 2.3 $

Do c là số nguyên dương nên $c=1$ hoặc $c=2$

+ Xét c=1 

Thay c =1 vào (1) ta có:

$ (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{1})=3 $

$ \Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})2=3 $

$ \Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})=\frac{3}{2} $

Từ  $a \ge b $

$\Rightarrow \frac{1}{a} \le \frac{1}{b}$

$\Rightarrow 1+\frac{1}{a} \le 1+\frac{1}{b}$

$\Rightarrow \frac{3}{2}=(1+\frac{1}{a})(1+\frac{1}{b}) \le (1+\frac{1}{b})^2$

$\Rightarrow 1+\frac{1}{b} \ge \sqrt{\frac{3}{2}}$

$\Rightarrow \frac{1}{b} \ge \sqrt{\frac{3}{2}} -1 $

$\Rightarrow b  \le \frac{1}{\sqrt{\frac{3}{2}} -1} < 4.5 $

Do b là số nguyên dương nên b=1,2,3,4 

* b = 1, thay c=1,b=1 vào biểu thức ban đầu ta có:

 $(a+1)(1+1)(1+1)=3a.1.1$ 

$\Rightarrow 4(a+1)=3a$

$\Rightarrow a=-4$ (loại khả năng này vì a nguyên dương)

* b = 2, thay c=1, b=2 vào biểu thức ban đầu ta có:

 $(a+1)(2+1)(1+1)=3a.2.1$ 

$\Rightarrow 6(a+1)=6a$ 

$\Rightarrow 6=0$ (vô lý, loại khả năng này) 

* b = 3, thay c=1, b=3 vào biểu thức ban đầu ta có:

 $(a+1)(3+1)(1+1)=3a.3.1$ 

$\Rightarrow 8(a+1)=9a$

$\Rightarrow a=8 $ (thỏa điều kiện)

* b = 4, thay c=1, b=4 vào biểu thức ban đầu ta có:

$(a+1)(4+1)(1+1)=3a.4.1$

$\Rightarrow 10(a+1)=12a$

$\Rightarrow 2a=10$

$\Rightarrow a=5$ (thỏa điều kiện) 

Vậy với c=1, ta thu được hai bộ số $(8;3;1),(5;4;1)$ thỏa mãn đẳng thức đã cho

+ Xét c = 2

Thay c =2 vào (1) ta có:

$ (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{2})=3 $

$ \Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})\frac{3}{2}=3 $

$ \Leftrightarrow (1+\frac{1}{a})(1+\frac{1}{b})=2 $

Từ  $a \ge b $

$\Rightarrow \frac{1}{a} \le \frac{1}{b}$

$\Rightarrow 1+\frac{1}{a} \le 1+\frac{1}{b}$

$\Rightarrow 2 =(1+\frac{1}{a})(1+\frac{1}{b}) \le (1+\frac{1}{b})^2$

$\Rightarrow 1+\frac{1}{b} \ge \sqrt{2}$

$\Rightarrow \frac{1}{b} \ge \sqrt{2} -1 $

$\Rightarrow b  \le \frac{1}{\sqrt{2} -1} < 2.5 $

Do b là số nguyên dương lớn hơn hay bằng c nên b chỉ có thể là 2 

Thay b=2, c=2 vào biểu thức đã cho ta có:

$(a+1)(2+1)(2+1)=3a.2.2$

$\Leftrightarrow 9(a+1)=12a$

$\Leftrightarrow 3a=9$

$\Leftrightarrow a=3$ (thỏa điều kiện)
Vậy trường hợp c=2 ta thu được 1 bộ số $(3;2;2)$ thỏa đẳng thức đã cho
Đáp số:

Các số (a;b;c) cần tìm là $(8;3;1),(5;4;1),(3;2;2)$ và các hoán vị của chúng.


26/05/2025

Câu 2a, Thi chuyên 10 Bạc Liêu, năm học 2025-2026

 Đề:

Giải hệ phương trình:

$\left \lbrace \begin{aligned}&x^2+(x-1)(y+1) =2y^2-1 \\&x^2+y^2-10= 0\end{aligned}\right.$

Bài giải:

Biến đổi phương trình thứ nhất:

$x^2+(x-1)(y+1) =2y^2-1$

$\Leftrightarrow x^2+xy+x-y-1=2y^2-1$

$\Leftrightarrow 2y^2+(1-x)y-x^2-x=0$

Giải phương trinh bậc hai này theo biến y.

Ta có $\Delta = (1-x)^2-4.2.(-x^2-x)=x^2-2x+1+8x^2+8x=9x^2+6x+1=(3x+1)^2 \ge 0 \forall x$

Ta tính ra được $y=x$ hoặc $y = -\frac{x+1}{2}$

  • $y = x$ thay vào phương trình thứ 2 ta có:
    $x^2+x^2-10=0$
    $\Leftrightarrow 2x^2=10$
    $\Leftrightarrow x^2 = 5$
    $ \Leftrightarrow x=\pm\sqrt{5}$
    Ta thu được hai nghiệm $(-\sqrt{5};-\sqrt{5}), (\sqrt{5};\sqrt{5})$
  • $y = -\frac{x+1}{2}$ thay vào phương trình thứ hai ta có:
    $x^2+(-\frac{x+1}{2})^2-10=0$
    $\Leftrightarrow 5x^2+2x-39=10$
    Giải phương trình bậc hai này ta có hai nghiệm $x=-3$ và $x=\frac{13}{5}$
    Tương ứng với $y=1$ và $y=-\frac{9}{5}$
    Ta thu thêm hai nghiệm của hệ phương trình đã cho là $(-3;1),(\frac{13}{5};-\frac{9}{5})$
Vậy hệ phương trình đã cho có 4 nghiệm:
$(-\sqrt{5};-\sqrt{5}), (\sqrt{5};\sqrt{5}),(-3;1),(\frac{13}{5};-\frac{9}{5})$


25/05/2025

Câu 4, Thi tuyển lớp 10 chuyên Bạc Liêu năm học 2025-2026

Đề:
Tìm tất cả các nghiệm nguyên dương của phương trình: $x(x-y-1)+y(y-1)=3$
Lời giải:
$x(x-y-1)+y(y-1)=3$
$\Leftrightarrow x^2-(y+1)x+y^2-y-3=0$
Giải phương trình bậc hai theo nghiệm x. Ta có: $\Delta = (y+1)^2 -4(y^2-y-3) = (y^2+2y+1)-4y^2+4y+12 = -3y^2+6y+13$
Để phương trình có nghiệm x thì $\Delta \ge 0$
$\Leftrightarrow -3y^2+6y+13 \ge 0$
$\Leftrightarrow 1-\frac{4}{\sqrt{3}} \le y \le 1+\frac{4}{\sqrt{3}}$
Do y là số nguyên dương nên $y=1,2,3$ Thay giá trị của y lần lượt vào công thức tính x:$x=\frac{y+1 \pm \sqrt{-3y^2+6y+13}}{2}$
  • $y=1$ thì $x=-1 \lor x=3$ vì x là số nguyên dương nên chọn nghiệm $x=3$
  • $y=2$ thì $x=\frac{3\pm\sqrt{13}}{2}$ vì x là số nguyên dương nên loại cả hai nghiệm này.
  • $y=3$ thì $x=1 \lor x=3$ cả hai đều là số nguyên dương nên ta nhận cả hai nghiệm này.
Vậy phương trình đã cho có 3 nghiệm nguyên dương:$(1;3),(3;3),(3;1)$

Câu 1b, Thi 10 Chuyên Bạc Liêu năm học 2025-2026

Đề: Cho x,y,z dương thỏa mãn $xyz=1$
Tính giá trị biểu thức $P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}$
Bài giải: $P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1} (1)$
Biến đổi P như sau:
$P=\frac{\sqrt{x}.\sqrt{z}}{(\sqrt{xy}+\sqrt{x}+1).\sqrt{z}}+\frac{\sqrt{y}.\sqrt{x}}{(\sqrt{yz}+\sqrt{y}+1).\sqrt{x}}+\frac{\sqrt{z}.\sqrt{y}}{(\sqrt{xz}+\sqrt{z}+1).\sqrt{y}}$
$=\frac{\sqrt{xz}}{1+\sqrt{xz}+\sqrt{z}}+\frac{\sqrt{xy}}{1+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{yz}}{1+\sqrt{yz}+\sqrt{y}}$
$P=\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1} (2)$
Biến đổi P theo cách khác:
$P=\frac{\sqrt{x}.\sqrt{yz}}{(\sqrt{xy}+\sqrt{x}+1).\sqrt{yz}}+\frac{\sqrt{y}.\sqrt{xz}}{(\sqrt{yz}+\sqrt{y}+1).\sqrt{xz}}+\frac{\sqrt{z}.\sqrt{xy}}{(\sqrt{xz}+\sqrt{z}+1).\sqrt{xy}}$
$=\frac{1}{\sqrt{y}+1+\sqrt{yz}}+\frac{1}{\sqrt{z}+1+\sqrt{xz}}+\frac{1}{(\sqrt{x}+1+\sqrt{xy}}$
$P=\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1} (3)$
Cộng (1), (2) và (3) vế theo vế ta có:
$3P=(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1})$ $+(\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1})$ $+(\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1}) $
$=(\frac{\sqrt{xy}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{xy}+\sqrt{x}+1})+$ $(\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1})+$ $(\frac{\sqrt{xz}}{\sqrt{xz}+\sqrt{z}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}+\frac{1}{\sqrt{xz}+\sqrt{z}+1})$
$=1+1+1=3$
$\Rightarrow P = 1$
Đáp số:$P=1$

Câu 1a, Thi 10 Chuyên Bạc Liêu năm học 2025-2026

 Đề:

Rút gọn biểu thức $A=\sqrt{8+2\sqrt{15}}+\sqrt{7-4\sqrt{3}}-\sqrt{5}$

Lời giải:
$A=\sqrt{8+2\sqrt{15}} +\sqrt{7-4\sqrt{3}}-\sqrt{5}$
$=\sqrt{3+2\sqrt{3}\sqrt{5}+5}+\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{5}$
$=\sqrt{(\sqrt{3})^2+2\sqrt{3}\sqrt{5}+(\sqrt{5})^2}+\sqrt{2^2-2.2.\sqrt{3}+(\sqrt{3})^2}-\sqrt{5}$
$=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(2-\sqrt{3})^2}-\sqrt{5}$
$=(\sqrt{3}+\sqrt{5})+(2-\sqrt{3})-\sqrt{5}$
$=2$
Đáp số: $A=2$

Câu 2b, Thi vào lớp 10 chuyên Hà Tĩnh năm học 2024-2025

 Đề:

Giải hệ phương trình 

$\left \lbrace \begin{aligned}&(x+y)(4x+y) = 5x+2y-1 \\&2x^2-5x+2\sqrt{x+y}-\sqrt{3x-1} = 0\end{aligned}\right.$

Lời giải:

Điều kiện $3x-1\ge0 \land x+y \ge0 \Leftrightarrow y \ge -x \land x\ge \frac{1}{3}$

Phương trình thứ nhất $\Leftrightarrow 4x^2+5xy+y^2=5x+2y-1$

$\Leftrightarrow y^2+(5xy-2y)+(4x^2-5x-1)=0$

$\Leftrightarrow y^2+(5x-2)y+(4x^2-5x-1)=0$

Giải phương trình bậc 2 theo biến y, ta có hai hai nghiệm $y=1-x$ và $y=1-4x$

  • Trường hợp $y=1-x$ thay vào phương trình thứ 2:
    $2x^2-5x+2\sqrt{1}-\sqrt{3x-1} = 0$
    $\Leftrightarrow \sqrt{3x-1} = 2x^2-5x+2$
    $\Rightarrow 3x-1 = (2x^2-5x+2)^2$
    $\Leftrightarrow  4x^4-20x^3+33x^2-23x+5=0$
    $\Leftrightarrow (x^2-3x+1)(4x^2-8x+5)=0 (1)$
    Do $4x^2-8x+5 = 4(x^2-2x+1)+1 = 4(x-1)^2+1 \ge 1 \forall x$ 
    Nên $(1) \Leftrightarrow x^2-3x+1 = 0$
    Phương trình có hai nghiệm $x_1=\frac{3}{2}-\frac{\sqrt{5}}{2}$;$x_2=\frac{3}{2}+\frac{\sqrt{5}}{2}$
    Cả hai nghiệm thỏa mãn điều kiện $x\ge \frac{1}{3}$

  • Trường hợp $y=1-4x$ :
    Từ diều kiện $y \ge -x$, ta có: $1-4x \ge -x \Leftrightarrow x \le \frac{1}{3}$ 
    Kết hợp điều kiện $x\ge \frac{1}{3}  \Rightarrow x = \frac{1}{3}$. 
    Thay vào phương trình thứ 2 ta thấy giá trị này không thỏa.
    Đáp số:
    Hệ phương trình đã cho có hai nghiệm:$(\frac{3}{2}-\frac{\sqrt{5}}{2};-\frac{1}{2}+\frac{\sqrt{5}}{2}), (\frac{3}{2}+\frac{\sqrt{5}}{2};-\frac{1}{2}-\frac{\sqrt{5}}{2})$

  • Câu 2a, Thi vào lớp 10 chuyên Hà Tĩnh, năm 2024-2025

     Đề:

    Giải phương trình:

    $4x^3+31x^2-27=12(x^2+x)\sqrt{1-x}$ 
    Bài giải:
    Điều kiện: $x \le 1$
    $4x^3+31x^2-27=12(x^2+x)\sqrt{1-x}$
    $\Leftrightarrow (4x^3+4)+(31x^2-31)-12x(x+1)\sqrt{1-x}=0$
    $\Leftrightarrow 4(x^3+1)+31(x^2-1)-12x(x+1)\sqrt{1-x}=0$
    $\Leftrightarrow 4(x+1)(x^2-x+1)+31(x-1)(x+1)-12x(x+1)\sqrt{1-x}=0$
    $\Leftrightarrow (x+1)[4(x^2-x+1)+31(x-1)-12x\sqrt{1-x}]=0$
    $\Leftrightarrow \left[\begin{aligned}x+1 = 0 (1)\\4(x^2-x+1)+31(x-1)-12x\sqrt{1-x} = 0(2)\end{aligned}\right.$
    $(1) \Leftrightarrow x = -1$
    $(2) \Leftrightarrow [4x^2-2.2x.3\sqrt{1-x}+9(1-x)]+[27(x-1)-9(1-x)]=0$
    $\Leftrightarrow (2x-3\sqrt{1-x})^2-(6\sqrt{1-x})^2=0$
    $\Leftrightarrow \left[\begin{aligned}2x-3\sqrt{1-x}+ 6\sqrt{1-x}= 0 \\2x-3\sqrt{1-x}- 6\sqrt{1-x} = 0\end{aligned}\right.$
    $\Leftrightarrow \left[\begin{aligned}2x+3\sqrt{1-x}= 0 (3) \\2x-9\sqrt{1-x}= 0 (4) \end{aligned}\right.$
    $(3) \Leftrightarrow 2x = -3\sqrt{1-x} (5)$ 
    Điều kiện $ x \le 0$ 
    $(5) \Rightarrow 4x^2 = 9(1-x)$
    $\Leftrightarrow 4x^2+9x-9=0$
    Giải phương trình bậc hai ta có hai nghiệm $ x= -3 $ và $x=\frac{3}{4}$
    Kết hợp điều kiện $ x \le 0$  ta nhận nghiệm $ x= -3 $
    $(4) \Leftrightarrow 2x = 9\sqrt{1-x} (6)$ 
    Điều kiện $ x \ge 0$ kết hợp điều kiện ban đầu ta có điều kiện cho x là $ 0 \le x \le 1$
    $(6) \Rightarrow 4x^2 = 81(1-x)$
    $\Leftrightarrow 4x^2+81x-81=0$
    Giải phương trình bậc hai ta có hai nghiệm $x=-\frac{81}{8}-\frac{9\sqrt{97}}{8}$ và $x=-\frac{81}{8}+\frac{9\sqrt{97}}{8}$
    Kiểm tra điều kiện  $ 0 \le x \le 1$ ta chỉ nhận nghiệm $x=-\frac{81}{8}+\frac{9\sqrt{97}}{8}$
    Vậy phương trình đã cho có 3 nghiệm:
    $x_1=-1$; $x_2=-3$; $x_3=-\frac{81}{8}+\frac{9\sqrt{97}}{8}$

    24/05/2025

    Câu 6, Thi vào lớp 10 chuyên Hà Tĩnh, năm 2024-2025

    Đề:
    Trong hình lục giác đều có cạnh bằng 4 có 257 điểm phân biệt. Chứng minh rằng tồn tại hình vuông có cạnh bằng 1 chứa ít nhất 5 điểm (có thể thuộc cạnh hình vuông) trong các điểm đã cho.
    Lời giải:
    Đặt lục giác đều vào bên trong 1 hình vuông có cạnh là 8. Do khoảng cách xa nhất giữa hai điểm trên lục giác đều là 8 nên lục giác đều nằm trọn vẹn trong hình vuông này. 
    Kẻ các đường thẳng song song với các cạnh của hình vuông để tạo thành lưới 8 x 8 = 64 hình vuông có cạnh bằng 1. 
    Do 257 = 64.4 + 1 nên theo nguyên tắc Dirichlet thì sẽ tồn tại 1 hình vuông chứa ít nhất là 4 + 1 = 5 điểm trong 257 điểm này.


    Câu 1b, Thi vào lớp 10 chuyên Hà Tĩnh, năm học 2024-2025

    Đề: Cho a,b,c là các số thực thỏa mãn a+b+c=6 và $a^2+b^2+c^2=12$. Tính giá trị của biểu thức: $P = (a-3)^{2024}+(b-3)^{2024}+(c-3)^{2024}$
    Lời giải: Áp dụng bất đẳng thức BSC cho hai bộ số (a;b;c) và (1;1;1) ta có: $(a.1+b.1+c.1)^2 \le (a^2+b^2+c^2)(1^2+1^2+1^2)$
    $\Leftrightarrow (a+b+c)^2 \le (a^2+b^2+c^2).3$
    $\Leftrightarrow 6^2 \le 12.3$
    Dấu "=" của bất đẳng thức xảy ra $\Leftrightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{1}$ $\Leftrightarrow a = b = c$
    Kết hợp với điều kiện $a + b + c = 6$
    $\Rightarrow a = b = c = 2$
    Vậy $ P = (a-3)^{2024}+(b-3)^{2024}+(c-3)^{2024} $
    $= (2-3)^{2024}+(2-3)^{2024}+(2-3)^{2024} = 3.(-1)^{2024} = 3$
    Đáp số: $P = 3$