Giải phương trình nghiệm nguyên thỏa:
$1!+2!+..+x!=y^2$
Bài giải:
Ta có: $n!=1.2.3.4...(n-1).n$
Do đó nếu $x \ge 5$:
$VT = 1!+2!+3!+4!+5!+..+x! = 33+5k$
Số này chia cho 5 dư 3.
Mà ta biết một số chính phương chia cho 5 dư 0,1 hoặc 4.
Vậy $x \le 4$.
Ta thử lần lượt các giá trị có thể của x 1,2,3,4 thì thấy $x=3,y=3$ là nghiệm của phương trình đã cho.
Không có nhận xét nào:
Đăng nhận xét